Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.5194/acp-17-10001-2017 |
Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2 | |
Yu, Zechen; Jang, Myoseon; Park, Jiyeon | |
2017-08-25 | |
发表期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
出版年 | 2017 |
卷号 | 17期号:16 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | The photocatalytic ability of airborne mineral dust particles is known to heterogeneously promote SO2 oxidation, but prediction of this phenomenon is not fully taken into account by current models. In this study, the Atmospheric Mineral Aerosol Reaction (AMAR) model was developed to capture the influence of air-suspended mineral dust particles on sulfate formation in various environments. In the model, SO2 oxidation proceeds in three phases including the gas phase, the inorganic-salted aqueous phase (non-dust phase), and the dust phase. Dust chemistry is described as the absorption-desorption kinetics of SO2 and NOx (partitioning between the gas phase and the multilayer coated dust). The reaction of absorbed SO2 on dust particles occurs via two major paths: autoxidation of SO2 in open air and photocatalytic mechanisms under UV light. The kinetic mechanism of autoxidation was first leveraged using controlled indoor chamber data in the presence of Arizona Test Dust (ATD) particles without UV light, and then extended to photochemistry. With UV light, SO2 photooxidation was promoted by surface oxidants (OH radicals) that are generated via the photocatalysis of semiconducting metal oxides (electron-hole theory) of ATD particles. This photocatalytic rate constant was derived from the integration of the combinational product of the dust absorbance spectrum and wave-dependent actinic flux for the full range of wavelengths of the light source. The predicted concentrations of sulfate and nitrate using the AMAR model agreed well with outdoor chamber data that were produced under natural sunlight. For seven consecutive hours of photooxidation of SO2 in an outdoor chamber, dust chemistry at the low NOx level was attributed to 55% of total sulfate (56 ppb SO2, 290 mu g m(-3) ATD, and NOx less than 5 ppb). At high NOx (> 50 ppb of NOx with low hydrocarbons), sulfate formation was also greatly promoted by dust chemistry, but it was suppressed by the competition between NO2 and SO2, which both consume the dust-surface oxidants (OH radicals or ozone). |
领域 | 地球科学 |
收录类别 | SCI-E |
WOS记录号 | WOS:000408547700004 |
WOS关键词 | SULFUR-DIOXIDE OXIDATION ; AQUEOUS-PHASE OXIDATION ; GAS-PHASE ; PHOTOCHEMICAL DATA ; SAHARAN DUST ; TROPOSPHERIC CHEMISTRY ; HYGROSCOPIC PROPERTIES ; THERMODYNAMIC MODEL ; LIGHT-ABSORPTION ; WATER-UPTAKE |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/26150 |
专题 | 地球科学 |
作者单位 | Univ Florida, Engn Sch Sustainable Infrastruct & Environm, Dept Environm Engn Sci, POB 116450, Gainesville, FL 11645 USA |
推荐引用方式 GB/T 7714 | Yu, Zechen,Jang, Myoseon,Park, Jiyeon. Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2017,17(16). |
APA | Yu, Zechen,Jang, Myoseon,&Park, Jiyeon.(2017).Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2.ATMOSPHERIC CHEMISTRY AND PHYSICS,17(16). |
MLA | Yu, Zechen,et al."Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2".ATMOSPHERIC CHEMISTRY AND PHYSICS 17.16(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论