GSTDTAP  > 气候变化
DOI10.1029/2018GL081049
A Deep Learning Parameterization for Ozone Dry Deposition Velocities
Silva, S. J.1; Heald, C. L.1; Ravela, S.2; Mammarella, I.3; Munger, J. W.4
2019-01-28
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2019
卷号46期号:2页码:983-989
文章类型Article
语种英语
国家USA; Finland
英文摘要

The loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly uncertain process governed by turbulent transport, interfacial chemistry, and plant physiology. We demonstrate the value of using Deep Neural Networks (DNN) in predicting ozone dry deposition velocities. We find that a feedforward DNN trained on observations from a coniferous forest site (Hyytiala, Finland) can predict hourly ozone dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more accurately than modern theoretical models, with a reduction in the normalized mean bias (0.05 versus similar to 0.1). The same DNN model, when driven by assimilated meteorology at 2 degrees x 2.5 degrees spatial resolution, outperforms the Wesely scheme as implemented in the GEOS-Chem model. With more available training data from other climate and ecological zones, this methodology could yield a generalizable DNN suitable for global models.


Plain Language Summary Ozone in the lower atmosphere is a toxic pollutant and greenhouse gas. In this work, we use a machine learning technique known as deep learning, to simulate the loss of ozone to Earth's surface. We show that our deep learning simulation of this loss process outperforms existing traditional models and demonstrate the opportunity for using machine learning to improve our understanding of the chemical composition of the atmosphere.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000458607400050
WOS关键词BOREAL FOREST
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/26405
专题气候变化
作者单位1.MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA;
2.MIT, Dept Earth Atmospher & Planetary Sci, Earth Signals & Syst Grp, Cambridge, MA USA;
3.Univ Helsinki, Fac Sci, Inst Atmospher & Earth Syst Res Phys, Helsinki, Finland;
4.Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
推荐引用方式
GB/T 7714
Silva, S. J.,Heald, C. L.,Ravela, S.,et al. A Deep Learning Parameterization for Ozone Dry Deposition Velocities[J]. GEOPHYSICAL RESEARCH LETTERS,2019,46(2):983-989.
APA Silva, S. J.,Heald, C. L.,Ravela, S.,Mammarella, I.,&Munger, J. W..(2019).A Deep Learning Parameterization for Ozone Dry Deposition Velocities.GEOPHYSICAL RESEARCH LETTERS,46(2),983-989.
MLA Silva, S. J.,et al."A Deep Learning Parameterization for Ozone Dry Deposition Velocities".GEOPHYSICAL RESEARCH LETTERS 46.2(2019):983-989.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Silva, S. J.]的文章
[Heald, C. L.]的文章
[Ravela, S.]的文章
百度学术
百度学术中相似的文章
[Silva, S. J.]的文章
[Heald, C. L.]的文章
[Ravela, S.]的文章
必应学术
必应学术中相似的文章
[Silva, S. J.]的文章
[Heald, C. L.]的文章
[Ravela, S.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。