GSTDTAP  > 气候变化
DOI10.1029/2018GL079286
Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption
Zeng, Zhao-Cheng1; Natraj, Vijay2; Xu, Feng2; Pongetti, Thomas J.2; Shia, Run-Lie1; Kort, Eric A.3; Toon, Geoffrey C.2; Sander, Stanley P.2; Yung, Yuk L.1,2
2018-10-16
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2018
卷号45期号:19页码:10772-10780
文章类型Article
语种英语
国家USA
英文摘要

This study attempts to infer aerosol vertical structure in the urban boundary layer using passive hyperspectral measurements. A spectral sorting technique is developed to retrieve total aerosol optical depth (AOD) and effective aerosol layer height (ALH) from hyperspectral measurements in the 1.27-mu m oxygen absorption band by the mountaintop Fourier Transform Spectrometer at the California Laboratory for Atmospheric Remote Sensing instrument (1,673 m above sea level) overlooking the LA basin. Comparison to AOD measurements from Aerosol Robotic Network and aerosol backscatter profile measurements from a Mini MicroPulse Lidar shows agreement, with coefficients of determination (r(2)) of 0.74 for AOD and 0.57 for effective ALH. On average, the AOD retrieval has an error of 24.9% and root-mean-square error of 0.013, while the effective ALH retrieval has an error of 7.8% and root-mean-square error of 67.01 m. The proposed method can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain aerosol vertical distribution on a global scale.


Plain Language Summary Satellite and ground-based measurements have enabled accurate and continuous monitoring of total aerosol loading. However, these measurements provide little or no information on the vertical distribution of aerosols. In particular, there is poor measurement of aerosols in the planetary boundary layer, the part of the atmosphere closest to the surface. In this study, we develop an algorithm to retrieve the vertical structure of aerosols in the boundary layer using remote sensing observations of oxygen absorption with high spectral resolution. The algorithm is applied to infer the vertical profile of air pollutants in the Los Angeles basin using measurements made by a mountaintop instrument overlooking the basin. The proposed retrieval algorithm can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain the aerosol vertical distribution on a global scale. This important piece of information on aerosol vertical structure will potentially address several key priorities in the 2017 U.S. National Research Council Earth Science Decadal Survey, from forecasting air pollution in cities, quantifying the aerosol impact on Earth's climate, and reducing biases in greenhouse gas retrievals.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000448656800083
WOS关键词INFORMATION-CONTENT ANALYSIS ; CO2 RETRIEVAL ALGORITHM ; LOS-ANGELES ; A-BAND ; OPTICAL DEPTH ; CLARS-FTS ; PART II ; RADIATION ; O-2 ; SENSITIVITY
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/26952
专题气候变化
作者单位1.CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA;
2.CALTECH, Jet Prop Lab, Pasadena, CA USA;
3.Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
推荐引用方式
GB/T 7714
Zeng, Zhao-Cheng,Natraj, Vijay,Xu, Feng,et al. Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption[J]. GEOPHYSICAL RESEARCH LETTERS,2018,45(19):10772-10780.
APA Zeng, Zhao-Cheng.,Natraj, Vijay.,Xu, Feng.,Pongetti, Thomas J..,Shia, Run-Lie.,...&Yung, Yuk L..(2018).Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption.GEOPHYSICAL RESEARCH LETTERS,45(19),10772-10780.
MLA Zeng, Zhao-Cheng,et al."Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption".GEOPHYSICAL RESEARCH LETTERS 45.19(2018):10772-10780.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Zhao-Cheng]的文章
[Natraj, Vijay]的文章
[Xu, Feng]的文章
百度学术
百度学术中相似的文章
[Zeng, Zhao-Cheng]的文章
[Natraj, Vijay]的文章
[Xu, Feng]的文章
必应学术
必应学术中相似的文章
[Zeng, Zhao-Cheng]的文章
[Natraj, Vijay]的文章
[Xu, Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。