GSTDTAP  > 地球科学
First fossil nursery of the great white shark discovered
admin
2020-05-22
发布年2020
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)
IMAGE

IMAGE: Set of teeth of today's white shark and a reconstructed set of teeth of a fossil great white shark. view more 

Credit: ©Jaime Villafaña/Juergen Kriwet

The great white shark is one of the most charismatic, but also one of the most infamous sharks. Despite its importance as top predator in marine ecosystems, it is considered threatened with extinction; its very slow growth and late reproduction with only few offspring are - in addition to anthropogenic reasons - responsible for this.

Young white sharks are born in designated breeding areas, where they are protected from other predators until they are large enough not to fear competitors any more. Such nurseries are essential for maintaining stable and sustainable breeding population sizes, have a direct influence on the spatial distribution of populations and ensure the survival and evolutionary success of species. Researchers* have therefore intensified the search for such nurseries in recent years in order to mitigate current population declines of sharks by suitable protection measures. "Our knowledge about current breeding grounds of the great white shark is still very limited, however, and palaeo-nurseries are completely unknown", explains Jaime Villafaña from the University of Vienna.

He and his colleagues analysed statistically 5 to 2 million year old fossil teeth of this fascinating shark, which were found at several sites along the Pacific coast of Chile and Peru, to reconstruct body size distribution patterns of great white shark in the past. The results show that body sizes varied considerably along the South American paleo-Pacific coast. One of these localities in northern Chile, Coquimbo, revealed the highest percentage of young sharks, the lowest percentage of "teenagers". Sexually mature animals were completely absent.

This first undoubted paleo-nursery of the Great White Shark is of enormous importance. It comes from a time when the climate was much warmer than today, so that this time can be considered analogous to the expected global warming trends in the future. "If we understand the past, it will enable us to take appropriate protective measures today to ensure the survival of this top predator, which is of utmost importance for ecosystems," explains palaeobiologist Jürgen Kriwet: "Our results indicate that rising sea surface temperatures will change the distribution of fish in temperate zones and shift these important breeding grounds in the future".

This would have a direct impact on population dynamics of the great white shark and would also affect its evolutionary success in the future. "Studies of past and present nursery grounds and their response to temperature and paleo-oceanographic changes are essential to protect such ecological key species," concluded Jürgen Kriwet.

###

Publication in Scientific Reports:

First evidence of a palaeo-nursery area of the great white shark.
Villafaña, J.A., Hernandez, S., Alvarado, A., Shimada, K., Pimiento, C., Rivadeneira, M.M. & Kriwet, J., in: Scientific Reports,
DOI: 10.1038/s41598-020-65101-1

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/270570
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. First fossil nursery of the great white shark discovered. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。