Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2018GL078206 |
Field-Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMS-ARTEMIS Observations | |
Artemyev, A. V.1,2,3; Pritchett, P. L.4; Angelopoulos, V.1,2; Zhang, X. -J.1,2; Nakamura, R.5; Lu, S.1,2; Runov, A.1,2; Fuselier, S. A.6; Wellenzohn, S.5; Plaschke, F.5; Russell, C. T.1,2; Strangeway, R. J.1,2; Lindqvist, P. -A.7; Ergun, R. E.8 | |
2018-06-28 | |
发表期刊 | GEOPHYSICAL RESEARCH LETTERS
![]() |
ISSN | 0094-8276 |
EISSN | 1944-8007 |
出版年 | 2018 |
卷号 | 45期号:12页码:5836-5844 |
文章类型 | Article |
语种 | 英语 |
国家 | USA; Russia; Austria; Sweden |
英文摘要 | Near-Earth magnetic reconnection reconfigures the magnetotail and produces strong plasma flows that transport plasma sheet particles and electromagnetic energy to the inner magnetosphere. An essential element of such a reconfiguration is strong, transient field-aligned currents. These currents, believed to be generated within the plasma sheet and closed at the ionosphere, are responsible for magnetosphere-ionosphere coupling during substorms. We use conjugate measurements from Magnetospheric Multiscale (MMS) at the plasma sheet boundary (around x approximate to- 10R(E)) and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) at the equator (around x approximate to- 60R(E)) to explore the potential generation region of these currents. We find a clear correlation between the field-aligned current intensity measured by MMS and the tailward plasma sheet flows measured by ARTEMIS. To better understand the origin of this correlation, we compare spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection. The comparison reveals that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between MMS (near-Earth) and ARTEMIS (at lunar distance). A weak correlation between the field-aligned current intensity at MMS and earthward flow magnitudes at ARTEMIS suggests that distant magnetotail reconnection does not significantly contribute to the generation of the observed near-Earth currents. Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system. Plain Language Summary Field-aligned currents connect the Earth magnetotail and ionosphere, proving energy and information transport from the region where main energy release process, magnetic reconnection, occurs to the region where the collisional energy dissipation takes place. Therefore, investigation and modeling of the field-aligned current generation is important problem of the magnetosphere plasma physics. However, field-aligned current investigation requires simultaneous observations of reconnection signatures in the magnetotail and at high latitudes. Simultaneous and conjugate operation of two multispacecraft missions, Magnetospheric Multiscale and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun, for the first time provide an opportunity for such investigation. Combining spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection, we demonstrate that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between near-Earth (Magnetospheric Multiscale location) and lunar distant tail (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun location). Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system. |
英文关键词 | Earth magnetotail magnetic reconnection field-aligned currents |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000438499100004 |
WOS关键词 | SUBSTORM CURRENT WEDGE ; PLASMA SHEET BOUNDARY ; FLOW BRAKING ; ALFVEN WAVES ; MAGNETOTAIL ; THEMIS ; STABILITY ; DENSITY ; GEOTAIL ; LINES |
WOS类目 | Geosciences, Multidisciplinary |
WOS研究方向 | Geology |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/27062 |
专题 | 气候变化 |
作者单位 | 1.Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA; 2.Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA; 3.RAS, Space Res Inst, Moscow, Russia; 4.Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA; 5.Austrian Acad Sci, Space Res Inst, Graz, Austria; 6.Southwest Res Inst, San Antonio, TX USA; 7.Royal Inst Technol, Stockholm, Sweden; 8.Univ Colorado, LASP, Boulder, CO 80309 USA |
推荐引用方式 GB/T 7714 | Artemyev, A. V.,Pritchett, P. L.,Angelopoulos, V.,et al. Field-Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMS-ARTEMIS Observations[J]. GEOPHYSICAL RESEARCH LETTERS,2018,45(12):5836-5844. |
APA | Artemyev, A. V..,Pritchett, P. L..,Angelopoulos, V..,Zhang, X. -J..,Nakamura, R..,...&Ergun, R. E..(2018).Field-Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMS-ARTEMIS Observations.GEOPHYSICAL RESEARCH LETTERS,45(12),5836-5844. |
MLA | Artemyev, A. V.,et al."Field-Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMS-ARTEMIS Observations".GEOPHYSICAL RESEARCH LETTERS 45.12(2018):5836-5844. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论