GSTDTAP  > 气候变化
Leveraging Water Data in a Machine Learning–Based Model for Forecasting Violent Conflict
Samantha Kuzma; Peter Kerins; Liz Saccoccia; Cayla Whiteside; Hannes Roos; Charles Iceland
2020-03
出版年2020
国家美国
领域气候变化 ; 资源环境
英文摘要

We present a methodology to forecast conflict (defined as organized violence resulting in at least 10 fatalities over a 12-month period) up to a year in advance using a random forest model. When applied to test data, the model captures 86 percent of future conflicts. The model’s conflict signal is noisy, with half of conflict predictions representing false positives. We also explore whether water-related indicators are useful predictors of conflict. Water-related variables are assessed to be correlated with conflict outcomes, but not empirically significant for model decision-making. However, adjusting the definition of conflict, such as by lowering the fatality threshold or examining only emerging conflict, increases the significance of water variables. A web-based tool that houses the model allows users to explore forecasts and indicators spatially and through time, providing additional information on underlying vulnerabilities as a first step toward enabling timely, effective water-related interventions to mitigate conflict and/or build peace.

URL查看原文
来源平台World Resources Institute
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/271117
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Samantha Kuzma,Peter Kerins,Liz Saccoccia,等. Leveraging Water Data in a Machine Learning–Based Model for Forecasting Violent Conflict,2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Samantha Kuzma]的文章
[Peter Kerins]的文章
[Liz Saccoccia]的文章
百度学术
百度学术中相似的文章
[Samantha Kuzma]的文章
[Peter Kerins]的文章
[Liz Saccoccia]的文章
必应学术
必应学术中相似的文章
[Samantha Kuzma]的文章
[Peter Kerins]的文章
[Liz Saccoccia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。