GSTDTAP  > 地球科学
GISERA examines hydraulic fracturing impacts on air quality, soils, groundwater and waterways
admin
2020-04-27
发布年2020
语种英语
国家澳大利亚
领域地球科学
正文(英文)

Additional Resources

;

Additional Resources

;

The study also found current water treatment technology used for treating water produced from coal seam gas wells is effective in removing hydraulic fracturing chemicals and naturally occurring (geogenic) chemicals to within relevant water quality guidelines.

Research objectives for Air, Water and Soil Impacts of Hydraulic Fracturing in the Surat Basin, Queensland [pdf · 1mb], conducted by the CSIRO’s Gas Industry Social and Environmental Research Alliance, were developed in response to community concerns about the potential for chemicals used in hydraulic fracturing operations to affect air quality, soils and water resources.

The study analysed air, water and soil samples taken before, during and up to six months after hydraulic fracturing operations at six coal seam gas wells in the Surat Basin in Queensland.

GISERA Director Dr Damian Barrett said that the CSIRO research conducted via GISERA in this region was an Australian first and provided unique insights into the impacts of hydraulic fracturing in Australia.

“This new research provides valuable data about hydraulic fracturing in coal seam gas formations in the Surat Basin, Queensland,” Dr Barrett said.

“Previously, the only information about hydraulic fracturing was from overseas studies in quite different shale gas formations.

“Clearly governance, industry regulation and operational integrity are crucial in managing risk and potential impacts of hydraulic fracturing.”

Results from the studies showed:

  • Air quality monitoring found hydraulic fracturing operations had little to no impacts on air quality, with no significant variation between air quality at hydraulic fracturing operational sites and control sites where no hydraulic fracturing activities occurred.
  • Levels of most atmospheric air pollutants detected were generally below relevant national air quality objectives. Increased levels of airborne particles were associated with dust from vehicle movement.
  • Hydraulic fracturing chemicals were not detected in water samples taken from nearby groundwater bores, soil samples from sites adjacent to operational wells, or in water samples from a nearby creek.
  • Water produced from the wells immediately after fracturing contained hydraulic fracturing chemicals, elevated concentrations of major ions (salts), ammonia, organic carbon, some metals and organic compounds, with concentrations reducing to a pre-fractured state within 40 days.
  • Current water treatment operations are effective in removing hydraulic fracturing chemicals and geogenic chemicals either completely or reducing levels to within acceptable limits according to water quality guidelines.
  • Some types of biocides used in hydraulic fracturing fluids and some geogenic chemicals were completely degraded in soil samples within two to three days.
  • Soil microbial activity was reduced by the addition of hydraulic fracturing fluids and produced water.

GISERA is a collaboration between CSIRO, Commonwealth and state governments and industry established to undertake publicly reported independent research.

The purpose of GISERA is for CSIRO to provide quality assured scientific research and information to communities living in gas development regions focusing on social and environmental topics.

URL查看原文
来源平台Commonwealth Scientific and Industrial Research Organisation
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/273913
专题地球科学
推荐引用方式
GB/T 7714
admin. GISERA examines hydraulic fracturing impacts on air quality, soils, groundwater and waterways. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。