GSTDTAP  > 气候变化
DOI10.1002/2017GL073681
Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 M(w)7.8 Kaikura earthquake
Kaneko, Yoshihiro1; Fukuyama, Eiichi2; Hamling, Ian James1
2017-05-28
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2017
卷号44期号:10
文章类型Article
语种英语
国家New Zealand; Japan
英文摘要

The 2016 M7.8 Kaikoura (New Zealand) earthquake struck the east coast of the northern South Island, resulting in strong ground shaking and large surface fault slip. Since the earthquake was well recorded by a local strong-motion seismic network, near-fault data may provide direct measurements of dynamic parameters associated with the fault-weakening process. Here we estimate a proxy for slip-weakening distance D-c'', defined as double the fault-parallel displacement at the time of peak ground velocity, from accelerograms recorded at a near-fault station. Three-component ground displacements were recovered from the double numerical integration of accelerograms, and the corresponding final displacements are validated against coseismic displacement from geodetic data. The estimated D-c'' is 4.9 m at seismic station KEKS located similar to 2.7 km from a segment of the Kekerengu fault where large surface fault slip (similar to 12 m) has been observed. The inferred D-c'' is the largest value ever estimated from near-fault strong motion data, yet it appears to follow the scaling of D-c'' with final slip for several large strike-slip earthquakes. The energy budget of the M7.8 Kaikoura earthquake inferred from the scaling of D-c'' with final slip indicates that a large amount of energy was dissipated by on-and off-fault inelastic deformation during the propagation of the earthquake rupture, resulting in a slower average rupture speed (less than or similar to 2.0 km/s).


Plain Language Summary Slip-weakening distance is a parameter controlling the evolution of fault slip during an earthquake and is important for understanding rupture dynamics. However, it has been debated how large slip-weakening distance is and whether it scales with fault slip. We present evidence for large slip-weakening distance estimated from near-fault record of the recent magnitude 7.8 Kaikoura (New Zealand) earthquake. By examining seismic waveforms of the Kaikoura quake, we find that the slip-weakening distance is about 5 m on a portion of the Kekerengu fault, the largest value ever estimated directly from near-fault records. The large slip-weakening distance implies that a large amount of energy was dissipated by on-and off-fault inelastic deformation during the propagation of earthquake rupture, which may explain why the rupture propagation velocity of the Kaikoura quake was slower than that of most crustal earthquakes.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000404131900047
WOS关键词NEW-ZEALAND ; STRESS DROP ; RUPTURE ; PARAMETERS ; MOTION ; SHEAR ; DISPLACEMENTS ; RECORDINGS ; DEPENDENCE ; SURFACES
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/27420
专题气候变化
作者单位1.GNS Sci, Lower Hutt, New Zealand;
2.Nat Res Inst Earth Sci & Disaster Resilience, Tsukuba, Ibaraki, Japan
推荐引用方式
GB/T 7714
Kaneko, Yoshihiro,Fukuyama, Eiichi,Hamling, Ian James. Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 M(w)7.8 Kaikura earthquake[J]. GEOPHYSICAL RESEARCH LETTERS,2017,44(10).
APA Kaneko, Yoshihiro,Fukuyama, Eiichi,&Hamling, Ian James.(2017).Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 M(w)7.8 Kaikura earthquake.GEOPHYSICAL RESEARCH LETTERS,44(10).
MLA Kaneko, Yoshihiro,et al."Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 M(w)7.8 Kaikura earthquake".GEOPHYSICAL RESEARCH LETTERS 44.10(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kaneko, Yoshihiro]的文章
[Fukuyama, Eiichi]的文章
[Hamling, Ian James]的文章
百度学术
百度学术中相似的文章
[Kaneko, Yoshihiro]的文章
[Fukuyama, Eiichi]的文章
[Hamling, Ian James]的文章
必应学术
必应学术中相似的文章
[Kaneko, Yoshihiro]的文章
[Fukuyama, Eiichi]的文章
[Hamling, Ian James]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。