GSTDTAP  > 气候变化
DOI10.1029/2018GL079194
Dispersion Aerosol Indirect Effect in Turbulent Clouds: Laboratory Measurements of Effective Radius
Chandrakar, K. K.1,2; Cantrell, W.1,2; Kostinski, A. B.1,2; Shaw, R. A.1,2
2018-10-16
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2018
卷号45期号:19页码:10738-10745
文章类型Article
语种英语
国家USA
英文摘要

Cloud optical properties are determined not only by the number density n(d) and mean radius (r) over bar of cloud droplets but also by the shape of the droplet size distribution. The change in cloud optical depth with changing n(d), due to the change in distribution shape, is known as the dispersion effect. Droplet relative dispersion is defined as d = sigma(r)/(r) over bar. For the first time, a commonly used effective radius parameterization is tested in a controlled laboratory environment by creating a turbulent cloud. Stochastic condensation growth suggests d independent of n(d) for a nonprecipitating cloud, hence nearly zero albedo susceptibility due to the dispersion effect. However, for size-dependent removal, such as in a laboratory cloud or highly clean atmospheric conditions, stochastic condensation produces a weak dispersion effect. The albedo susceptibility due to turbulence broadening has the same sign as the Twomey effect and augments it by order 10%.


Plain Language Summary Clouds cover a large fraction of the Earth and play an important role in determining Earth's climate. Their optical properties, such as how much sunlight they reflect back to space, are determined in part by the number of aerosol particles in the atmosphere. In addition to the mean cloud droplet size, the range of droplet sizes influences cloud optical properties, and that influence is called the dispersion effect. A positive dispersion effect means that an increase in cloud droplet number leads to a more reflective (brighter) cloud. We have carried out experiments in a laboratory cloud chamber to observe how the average size and the range of droplet sizes changes as aerosol concentration is varied. The laboratory chamber creates a turbulent environment. The results show that the the dispersion effect is positive, but small in magnitude. Cloud droplet activation, condensation growth in turbulence, and sedimentation are enough to reproduce stratocumulus observations.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000448656800079
WOS关键词DROPLET SIZE DISTRIBUTIONS ; SPECTRAL DISPERSION ; RADIATIVE PROPERTIES ; OPTICAL DEPTH ; PARAMETERIZATION ; ALBEDO ; SUSCEPTIBILITY ; MICROPHYSICS ; VARIABILITY ; SENSITIVITY
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/27478
专题气候变化
作者单位1.Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA;
2.Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
推荐引用方式
GB/T 7714
Chandrakar, K. K.,Cantrell, W.,Kostinski, A. B.,et al. Dispersion Aerosol Indirect Effect in Turbulent Clouds: Laboratory Measurements of Effective Radius[J]. GEOPHYSICAL RESEARCH LETTERS,2018,45(19):10738-10745.
APA Chandrakar, K. K.,Cantrell, W.,Kostinski, A. B.,&Shaw, R. A..(2018).Dispersion Aerosol Indirect Effect in Turbulent Clouds: Laboratory Measurements of Effective Radius.GEOPHYSICAL RESEARCH LETTERS,45(19),10738-10745.
MLA Chandrakar, K. K.,et al."Dispersion Aerosol Indirect Effect in Turbulent Clouds: Laboratory Measurements of Effective Radius".GEOPHYSICAL RESEARCH LETTERS 45.19(2018):10738-10745.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chandrakar, K. K.]的文章
[Cantrell, W.]的文章
[Kostinski, A. B.]的文章
百度学术
百度学术中相似的文章
[Chandrakar, K. K.]的文章
[Cantrell, W.]的文章
[Kostinski, A. B.]的文章
必应学术
必应学术中相似的文章
[Chandrakar, K. K.]的文章
[Cantrell, W.]的文章
[Kostinski, A. B.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。