GSTDTAP  > 地球科学
DOI10.5194/acp-2020-321
Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel
2020-06-19
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要We present the first high resolution measurements of pollutant trace gases in the Asian Summer Monsoon Upper Troposphere and Lowermost Stratosphere (UTLS) from the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) during the StratoClim (Stratospheric and upper tropospheric processes for better climate predictions) campaign with base in Kathamandu, Nepal, 2017. Measurements of peroxyacetyl nitrate (PAN), acetylene (C2H2), and formic acid (HCOOH) show strong local enhancements up to altitudes of 16 km. More than 500 pptv of PAN, more than 200 pptv of C2H2, and more than 200 pptv of HCOOH are observed. An observed local maximum of PAN and C2H2 at altitudes up to 18 km, reaching to the lowermost stratosphere, instead has been transported for a longer time. A local minimum of HCOOH is correlated with a maximum of ammonia (NH3), which suggests different wash out efficiencies of these species in the same air masses. To study the influence of convective transport to the measured pollution trace gas occurrences in detail, a trajectory analysis of the models ATLAS and TRACZILLA examined backward trajectories, starting at geolocations of GLORIA measurements with enhanced pollution trace gases. Both trajectory schemes implemented advanced techniques for detection of convective events. These convective events along trajectories leading to GLORIA measurements with enhanced pollutants are located close to regions, where satellite measurements by OMI show enhanced tropospheric columns of nitrogen dioxide (NO2) in the days prior to the observation. As an application of these highly resolved measurements, a comparison to the atmospheric models CAMS and EMAC is performed. It is demonstrated that these simulation results are able to reproduce large scale structures of the pollution trace gas distributions if the convective influence on the measured air masses is captured by the meteorological fields used by these simulations. Both models do not have sufficient horizontal resolution to capture all the convective events that are necessary to reproduce the fine structures measured by GLORIA. To investigate the influence of the strength of non-methane volatile organic compounds (NMVOCs) emissions in the EMAC model, sensitivity studies with artificially enhanced NMVOC emissions are performed. With these enhanced emissions, the simulation results succeed to reproduce the measured peak values of the pollutants, but do not improve the comparison of spatial distributions.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/276516
专题地球科学
推荐引用方式
GB/T 7714
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel. Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017[J]. Atmospheric Chemistry and Physics,2020.
APA Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel.(2020).Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017.Atmospheric Chemistry and Physics.
MLA Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel."Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel]的文章
百度学术
百度学术中相似的文章
[Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel]的文章
必应学术
必应学术中相似的文章
[Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。