GSTDTAP  > 气候变化
DOI10.1126/science.abc7610
Getting a grip on touch receptors
Kara Marshall; Ardem Patapoutian
2020-06-19
发表期刊Science
出版年2020
英文摘要Skin sets the boundaries of the body, and neuron endings within the skin translate pressure into percept. When exploring a surface with our hands, exquisitely mechanosensitive touch neurons can detect tiny wrinkles in texture down to 10 nm ([ 1 ][1]) or mere 3° differences in edge orientation ([ 2 ][2]). These feats are accomplished by diverse sensory cells that are tuned to capture the subtleties of our external world. On page 1330 of this issue, Neubarth et al. ([ 3 ][3]) characterize Meissner corpuscles, mechanosensory end organs in the skin that detect touch. The authors report that in mice, two neuron types comprise a single Meissner corpuscle and that differences in their stimulus thresholds, electrical conduction velocity, and response patterns could underly the sensitivity range of Meissner corpuscles. They also demonstrate that these receptors are critical for tactile acuity. The skin is vast. Touch receptors cover every bodily surface, and their varied morphologies point to equally diverse functions. Merkel cell–neurite complexes that detect gentle touch cup epidermal ridges in the fingertips but elsewhere terminate closer to the skin surface. Lanceolate endings encircle the base of each hair and detect hair movement. Pacinian corpuscles sit deep in the skin whereas Meissner corpuscles are superficial, but both detect vibrations ([ 4 ][4]). This distributed array, and the lack of specific markers, has made it difficult to study individual touch receptor types. Meissner neuron afferents are rapidly adapting, meaning that they have brief responses to sustained pressure applied to the skin. This response profile is ideal for detecting movement and small slips that occur when scanning an object ([ 5 ][5]). Thus, Meissner corpuscles have been hypothesized to be critical for tactile acuity, but the only way to confirm this is to selectively remove them. Neubarth et al. accomplish this in the mouse. The breadth of their findings was enabled by a variety of tools, ranging from electron microscopy to naturalistic behavioral paradigms. The morphology of neuron endings in the skin is inherently related to function. For example, hair follicles act as levers for the neurons that surround them, and ample lamellar wrappings from Schwann cells create a filter that shields Pacinian corpuscles from low-frequency vibrations. Meissner corpuscles are also wrapped in lamellae and poised to detect superficial stimuli, as they sit at the top of dermal papillae. Genetic tools to distinguish distinct touch receptor populations have not been available until recently ([ 6 ][6], [ 7 ][7]). By combining known Meissner neuron marker genes, Neubarth et al. found that two genetically distinct neurons intertwine in a single Meissner corpuscle. Electron microscopy revealed that neuron endings that express Ret (rearranged during transfection) receptors had fewer lamellar wrappings compared to neuron endings that express TrkB (tropomyosin receptor kinase B) receptors (see the figure). Lamellar wrappings dampen vibration responses of Pacinian corpuscles, and removing lamellae converts rapidly adapting responses into sustained ones ([ 8 ][8]). Indeed, in vivo recordings revealed functional differences between Meissner afferent types: Compared to TrkB-expressing neurons, Ret-expressing neurons had higher thresholds, faster electrical conduction velocity, and sometimes sustained responses, but lacked “off” responses to stimulus removal. It is not clear whether these properties are conferred by the modest variations in lamellar structure, differences in protein expression, or a combination of mechanisms. The findings do suggest that a Meissner corpuscle is two sensors joined into one, which offers an intriguing mechanism by which a single receptor can achieve greater dynamic range. What information do Meissner corpuscles convey? For years, the standard tool for studying mouse touch has been von Frey filaments, which are a set of probes with differing stiffness. The readout for whether a mouse feels these probes is paw movement when poked, but mice vary in their motivation, and unexpected pokes do not represent normal tactile experiences. Scientists have recently developed newer assays to probe touch in more creative ways. For example, mice prefer still surfaces to vibrating ones and will ceaselessly work to remove tape stuck on their back ([ 9 ][9]). Tasks that probe recognition of unfamiliar objects can be used for testing texture detection, and air puffs can test hair movement sensation ([ 10 ][10]). These developments have expanded our understanding of touch, but they fall short of psychometric tests for skill. Moreover, they offer a limited understanding of how mice use touch in natural settings. Neubarth et al. designed an operant conditioning paradigm using a water reward delivered after a gentle touch, which allowed them to build psychometric curves. Mice lacking Meissner corpuscles were far less skilled at detecting gentle indentation in this task. Additionally, behavioral analysis of mice handling sunflower seeds revealed that Meissner corpuscles are critical for fine sensorimotor control. This experimental evidence connects a specific touch receptor with naturalistic tactile behavior. The deficits observed in these animals, despite having many other functional touch receptors, emphasize that Meissner corpuscles are indispensable for creating the full spectrum of touch sensation. Future work could disentangle the differential contributions of each Meissner neuron subtype to these tasks. Rapidly adapting responses from Meissner corpuscles are ideal for conveying dynamic touch, and their sensitivity to movement and slip have long made them candidates for fine-tuning grip. Primate species that spend more time handling fruit have higher densities of Meissner corpuscles in their palm skin ([ 11 ][11]). The findings of Neubarth et al. solidify this role. Nonetheless, these receptors are insensitive to static stimuli and poorly resolve spatial details ([ 4 ][4]). Many studies have confirmed that spatial discrimination, particularly of coarse or static stimuli, is better served by slowly adapting responses from Merkel cell–neurite complexes ([ 4 ][4]). Behavioral tasks that select for spatial discrimination will be crucial to fully understand the functional contributions of different touch receptors. These data raise several questions. Where does the mechanotransduction ion channel PIEZO2 (Piezo type mechanosensitive ion channel component 2), which is necessary for touch sensation ([ 9 ][9], [ 12 ][12]), sit in this structure? Neubarth et al. and others ([ 13 ][13]) identified small lamellar openings that expose the naked axon to the extracellular matrix. Might these openings be sites of mechanotransduction? It is also unclear what benefit dual innervation offers. Computational modeling suggests that the organization observed for Meissner corpuscles increases tactile information and acuity ([ 3 ][3]). This could be a broader theme among touch receptors. Different neurons are neatly interdigitated in lanceolate endings ([ 13 ][13]), and Merkel cells occasionally have atypical neurons wandering nearby ([ 14 ][14]). These neurons are not as intimately intertwined as in Meissner corpuscles, but perhaps they function similarly. These exciting findings pave the way for understanding the full complexity of touch receptor function. 1. [↵][15]1. L. Skedung et al ., Sci. Rep. 3, 2617 (2013). [OpenUrl][16][CrossRef][17][PubMed][18] 2. [↵][19]1. J. A. Pruszynski, 2. J. R. Flanagan, 3. R. S. Johansson , eLife 7, e31200 (2018). [OpenUrl][20][CrossRef][21] 3. [↵][22]1. N. L. Neubarth et al ., Science 368, eabb2751 (2020). [OpenUrl][23][Abstract/FREE Full Text][24] 4. [↵][25]1. V. E. Abraira, 2. D. D. Ginty , Neuron 79, 618 (2013). [OpenUrl][26][CrossRef][27][PubMed][28][Web of Science][29] 5. [↵][30]1. K. O. Johnson , Curr. Opin. Neurobiol. 11, 455 (2001). [OpenUrl][31][CrossRef][32][PubMed][33][Web of Science][34] 6. [↵][35]1. S. Bourane et al ., Neuron 64, 857 (2009). [OpenUrl][36][CrossRef][37][PubMed][38][Web of Science][39] 7. [↵][40]1. W. Luo, 2. H. Enomoto, 3. F. L. Rice, 4. J. Milbrandt, 5. D. D. Ginty , Neuron 64, 841 (2009). [OpenUrl][41][CrossRef][42][PubMed][43][Web of Science][44] 8. [↵][45]1. W. R. Loewenstein, 2. M. Mendelson , J. Physiol. 177, 377 (1965). [OpenUrl][46][CrossRef][47][PubMed][48][Web of Science][49] 9. [↵][50]1. S. S. Ranade et al ., Nature 516, 121 (2014). [OpenUrl][51][CrossRef][52][PubMed][53][Web of Science][54] 10. [↵][55]1. L. L. Orefice et al ., Cell 166, 299 (2016). [OpenUrl][56][CrossRef][57][PubMed][58] 11. [↵][59]1. J. N. Hoffmann, 2. A. G. Montag, 3. N. J. Dominy , Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 281, 1138 (2004). [OpenUrl][60][PubMed][61] 12. [↵][62]1. A. T. Chesler et al ., N. Engl. J. Med. 375, 1355 (2016). [OpenUrl][63][CrossRef][64][PubMed][65] 13. [↵][66]1. L. Li, 2. D. D. Ginty , eLife 3, e01901 (2014). [OpenUrl][67][CrossRef][68][PubMed][69] 14. [↵][70]1. C. M. Reinisch, 2. E. Tschachler , Ann. Neurol. 58, 88 (2005). [OpenUrl][71][CrossRef][72][PubMed][73] Acknowledgments: We thank R. Hill for helpful editing. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: #ref-13 [14]: #ref-14 [15]: #xref-ref-1-1 "View reference 1 in text" [16]: {openurl}?query=rft.jtitle%253DSci.%2BRep.%26rft.volume%253D3%26rft.spage%253D2617%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fsrep02617%26rft_id%253Dinfo%253Apmid%252F24030568%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [17]: /lookup/external-ref?access_num=10.1038/srep02617&link_type=DOI [18]: /lookup/external-ref?access_num=24030568&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [19]: #xref-ref-2-1 "View reference 2 in text" [20]: {openurl}?query=rft.jtitle%253DeLife%26rft.volume%253D7%26rft.spage%253De31200%26rft_id%253Dinfo%253Adoi%252F10.7554%252FeLife.31200%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/external-ref?access_num=10.7554/eLife.31200&link_type=DOI [22]: #xref-ref-3-1 "View reference 3 in text" [23]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DNeubarth%26rft.auinit1%253DN.%2BL.%26rft.volume%253D368%26rft.issue%253D6497%26rft.spage%253Deabb2751%26rft.epage%253Deabb2751%26rft.atitle%253DMeissner%2Bcorpuscles%2Band%2Btheir%2Bspatially%2Bintermingled%2Bafferents%2Bunderlie%2Bgentle%2Btouch%2Bperception%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abb2751%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjE3OiIzNjgvNjQ5Ny9lYWJiMjc1MSI7czo0OiJhdG9tIjtzOjIzOiIvc2NpLzM2OC82NDk3LzEzMTEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [25]: #xref-ref-4-1 "View reference 4 in text" [26]: {openurl}?query=rft.jtitle%253DNeuron%26rft.volume%253D79%26rft.spage%253D618%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.neuron.2013.07.051%26rft_id%253Dinfo%253Apmid%252F23972592%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [27]: /lookup/external-ref?access_num=10.1016/j.neuron.2013.07.051&link_type=DOI [28]: /lookup/external-ref?access_num=23972592&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [29]: /lookup/external-ref?access_num=000323587000004&link_type=ISI [30]: #xref-ref-5-1 "View reference 5 in text" [31]: {openurl}?query=rft.jtitle%253DCurrent%2Bopinion%2Bin%2Bneurobiology%26rft.stitle%253DCurr%2BOpin%2BNeurobiol%26rft.aulast%253DJohnson%26rft.auinit1%253DK.%2BO.%26rft.volume%253D11%26rft.issue%253D4%26rft.spage%253D455%26rft.epage%253D461%26rft.atitle%253DThe%2Broles%2Band%2Bfunctions%2Bof%2Bcutaneous%2Bmechanoreceptors.%26rft_id%253Dinfo%253Adoi%252F10.1016%252FS0959-4388%252800%252900234-8%26rft_id%253Dinfo%253Apmid%252F11502392%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: /lookup/external-ref?access_num=10.1016/S0959-4388(00)00234-8&link_type=DOI [33]: /lookup/external-ref?access_num=11502392&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [34]: /lookup/external-ref?access_num=000170713900009&link_type=ISI [35]: #xref-ref-6-1 "View reference 6 in text" [36]: {openurl}?query=rft.jtitle%253DNeuron%26rft.volume%253D64%26rft.spage%253D857%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.neuron.2009.12.004%26rft_id%253Dinfo%253Apmid%252F20064392%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [37]: /lookup/external-ref?access_num=10.1016/j.neuron.2009.12.004&link_type=DOI [38]: /lookup/external-ref?access_num=20064392&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [39]: /lookup/external-ref?access_num=000273425800012&link_type=ISI [40]: #xref-ref-7-1 "View reference 7 in text" [41]: {openurl}?query=rft.jtitle%253DNeuron%26rft.volume%253D64%26rft.spage%253D841%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.neuron.2009.11.003%26rft_id%253Dinfo%253Apmid%252F20064391%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [42]: /lookup/external-ref?access_num=10.1016/j.neuron.2009.11.003&link_type=DOI [43]: /lookup/external-ref?access_num=20064391&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [44]: /lookup/external-ref?access_num=000273425800011&link_type=ISI [45]: #xref-ref-8-1 "View reference 8 in text" [46]: {openurl}?query=rft.jtitle%253DThe%2BJournal%2Bof%2BPhysiology%26rft.stitle%253DJ.%2BPhysiol.%26rft.aulast%253DLoewenstein%26rft.auinit1%253DW.%2BR.%26rft.volume%253D177%26rft.issue%253D3%26rft.spage%253D377%26rft.epage%253D397%26rft.atitle%253DComponents%2Bof%2Breceptor%2Badaptation%2Bin%2Ba%2BPacinian%2Bcorpuscle%26rft_id%253Dinfo%253Adoi%252F10.1113%252Fjphysiol.1965.sp007598%26rft_id%253Dinfo%253Apmid%252F14321486%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [47]: /lookup/external-ref?access_num=10.1113/jphysiol.1965.sp007598&link_type=DOI [48]: /lookup/external-ref?access_num=14321486&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [49]: /lookup/external-ref?access_num=A19656432800005&link_type=ISI [50]: #xref-ref-9-1 "View reference 9 in text" [51]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D516%26rft.spage%253D121%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature13980%26rft_id%253Dinfo%253Apmid%252F25471886%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [52]: /lookup/external-ref?access_num=10.1038/nature13980&link_type=DOI [53]: /lookup/external-ref?access_num=25471886&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [54]: /lookup/external-ref?access_num=000346310800052&link_type=ISI [55]: #xref-ref-10-1 "View reference 10 in text" [56]: {openurl}?query=rft.jtitle%253DCell%26rft.volume%253D166%26rft.spage%253D299%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.cell.2016.05.033%26rft_id%253Dinfo%253Apmid%252F27293187%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [57]: /lookup/external-ref?access_num=10.1016/j.cell.2016.05.033&link_type=DOI [58]: /lookup/external-ref?access_num=27293187&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [59]: #xref-ref-11-1 "View reference 11 in text" [60]: {openurl}?query=rft.jtitle%253DThe%2Banatomical%2Brecord.%2BPart%2BA%252C%2BDiscoveries%2Bin%2Bmolecular%252C%2Bcellular%252C%2Band%2Bevolutionary%2Bbiology%26rft.stitle%253DAnat%2BRec%2BA%2BDiscov%2BMol%2BCell%2BEvol%2BBiol%26rft.aulast%253DHoffmann%26rft.auinit1%253DJ.%2BN.%26rft.volume%253D281%26rft.issue%253D1%26rft.spage%253D1138%26rft.epage%253D1147%26rft.atitle%253DMeissner%2Bcorpuscles%2Band%2Bsomatosensory%2Bacuity%253A%2Bthe%2Bprehensile%2Bappendages%2Bof%2Bprimates%2Band%2Belephants.%26rft_id%253Dinfo%253Apmid%252F15470674%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [61]: /lookup/external-ref?access_num=15470674&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [62]: #xref-ref-12-1 "View reference 12 in text" [63]: {openurl}?query=rft.jtitle%253DN.%2BEngl.%2BJ.%2BMed.%26rft.volume%253D375%26rft.spage%253D1355%26rft_id%253Dinfo%253Adoi%252F10.1056%252FNEJMoa1602812%26rft_id%253Dinfo%253Apmid%252F27653382%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [64]: /lookup/external-ref?access_num=10.1056/NEJMoa1602812&link_type=DOI [65]: /lookup/external-ref?access_num=27653382&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [66]: #xref-ref-13-1 "View reference 13 in text" [67]: {openurl}?query=rft.jtitle%253DeLife%26rft.stitle%253Delife%26rft.volume%253D3%26rft.issue%253D0%26rft.spage%253De01901%26rft.epage%253De01901%26rft.atitle%253DThe%2Bstructure%2Band%2Borganization%2Bof%2Blanceolate%2Bmechanosensory%2Bcomplexes%2Bat%2Bmouse%2Bhair%2Bfollicles%26rft_id%253Dinfo%253Adoi%252F10.7554%252FeLife.01901%26rft_id%253Dinfo%253Apmid%252F24569481%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [68]: /lookup/external-ref?access_num=10.7554/eLife.01901&link_type=DOI [69]: /lookup/external-ref?access_num=24569481&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom [70]: #xref-ref-14-1 "View reference 14 in text" [71]: {openurl}?query=rft.jtitle%253DAnnals%2Bof%2Bneurology%26rft.stitle%253DAnn%2BNeurol%26rft.aulast%253DReinisch%26rft.auinit1%253DC.%2BM.%26rft.volume%253D58%26rft.issue%253D1%26rft.spage%253D88%26rft.epage%253D95%26rft.atitle%253DThe%2Btouch%2Bdome%2Bin%2Bhuman%2Bskin%2Bis%2Bsupplied%2Bby%2Bdifferent%2Btypes%2Bof%2Bnerve%2Bfibers.%26rft_id%253Dinfo%253Adoi%252F10.1002%252Fana.20527%26rft_id%253Dinfo%253Apmid%252F15984029%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [72]: /lookup/external-ref?access_num=10.1002/ana.20527&link_type=DOI [73]: /lookup/external-ref?access_num=15984029&link_type=MED&atom=%2Fsci%2F368%2F6497%2F1311.atom
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/276684
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Kara Marshall,Ardem Patapoutian. Getting a grip on touch receptors[J]. Science,2020.
APA Kara Marshall,&Ardem Patapoutian.(2020).Getting a grip on touch receptors.Science.
MLA Kara Marshall,et al."Getting a grip on touch receptors".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kara Marshall]的文章
[Ardem Patapoutian]的文章
百度学术
百度学术中相似的文章
[Kara Marshall]的文章
[Ardem Patapoutian]的文章
必应学术
必应学术中相似的文章
[Kara Marshall]的文章
[Ardem Patapoutian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。