GSTDTAP  > 地球科学
DOI10.5194/acp-20-1795-2020
Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design
Super, Ingrid; Dellaert, Stijn N. C.; Visschedijk, Antoon J. H.; van der Gon, Hugo A. C. Denier
2020-02-14
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2020
卷号20期号:3页码:1795-1816
文章类型Article
语种英语
国家Netherlands
英文摘要

Quantification of greenhouse gas emissions is receiving a lot of attention because of its relevance for climate mitigation. Complementary to official reported bottom-up emission inventories, quantification can be done with an inverse modelling framework, combining atmospheric transport models, prior gridded emission inventories and a network of atmospheric observations to optimize the emission inventories. An important aspect of such a method is a correct quantification of the uncertainties in all aspects of the modelling framework. The uncertainties in gridded emission inventories are, however, not systematically analysed. In this work, a statistically coherent method is used to quantify the uncertainties in a high-resolution gridded emission inventory of CO2 and CO for Europe. We perform a range of Monte Carlo simulations to determine the effect of uncertainties in different inventory components, including the spatial and temporal distribution, on the uncertainty in total emissions and the resulting atmospheric mixing ratios. We find that the uncertainties in the total emissions for the selected domain are 1% for CO2 and 6% for CO. Introducing spatial disaggregation causes a significant increase in the uncertainty of up to 40% for CO2 and 70% for CO for specific grid cells. Using gridded uncertainties, specific regions can be defined that have the largest uncertainty in emissions and are thus an interesting target for inverse modellers. However, the largest sectors are usually the best-constrained ones (low relative uncertainty), so the absolute uncertainty is the best indicator for this. With this knowledge, areas can be identified that are most sensitive to the largest emission uncertainties, which supports network design.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000514165600003
WOS关键词CARBON-DIOXIDE ; AIR-QUALITY ; VERIFICATION ; AREA ; MONOXIDE ; CITY ; UK
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/278621
专题地球科学
作者单位TNO, Dept Climate Air & Sustainabil, POB 80015, NL-3508 TA Utrecht, Netherlands
推荐引用方式
GB/T 7714
Super, Ingrid,Dellaert, Stijn N. C.,Visschedijk, Antoon J. H.,et al. Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2020,20(3):1795-1816.
APA Super, Ingrid,Dellaert, Stijn N. C.,Visschedijk, Antoon J. H.,&van der Gon, Hugo A. C. Denier.(2020).Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(3),1795-1816.
MLA Super, Ingrid,et al."Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.3(2020):1795-1816.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Super, Ingrid]的文章
[Dellaert, Stijn N. C.]的文章
[Visschedijk, Antoon J. H.]的文章
百度学术
百度学术中相似的文章
[Super, Ingrid]的文章
[Dellaert, Stijn N. C.]的文章
[Visschedijk, Antoon J. H.]的文章
必应学术
必应学术中相似的文章
[Super, Ingrid]的文章
[Dellaert, Stijn N. C.]的文章
[Visschedijk, Antoon J. H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。