GSTDTAP  > 地球科学
DOI10.5194/acp-20-2303-2020
Technical note: Deep learning for creating surrogate models of precipitation in Earth system models
Weber, Theodore1; Corotan, Austin1; Hutchinson, Brian1,2; Krayitz, Ben3,4; Link, Robert5
2020-02-26
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2020
卷号20期号:4页码:2303-2317
文章类型Article
语种英语
国家USA
英文摘要

We investigate techniques for using deep neural networks to produce surrogate models for short-term climate forecasts. A convolutional neural network is trained on 97 years of monthly precipitation output from the 1pctCO2 run (the CO2 concentration increases by 1 % per year) simulated by the second-generation Canadian Earth System Model (CanESM2). The neural network clearly outperforms a persistence forecast and does not show substantially degraded performance even when the forecast length is extended to 120 months. The model is prone to underpredicting precipitation in areas characterized by intense precipitation events. Scheduled sampling (forcing the model to gradually use its own past predictions rather than ground truth) is essential for avoiding amplification of early forecasting errors. However, the use of scheduled sampling also necessitates preforecasting (generating forecasts prior to the first forecast date) to obtain adequate performance for the first few prediction time steps. We document the training procedures and hyperparameter optimization process for researchers who wish to extend the use of neural networks in developing surrogate models.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000518134300011
WOS关键词NEURAL-NETWORKS ; PREDICTION
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/278645
专题地球科学
作者单位1.Western Washington Univ, Comp Sci Dept, Bellingham, WA 98225 USA;
2.Pacific Northwest Natl Lab, Comp & Analyt Div, Seattle, WA 98109 USA;
3.Indiana Univ, Dept Earth & Atmospher Sci, Bloomington, IN USA;
4.Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA;
5.Pacific Northwest Natl Lab, Joint Global Change Res Inst, College Pk, MD USA
推荐引用方式
GB/T 7714
Weber, Theodore,Corotan, Austin,Hutchinson, Brian,et al. Technical note: Deep learning for creating surrogate models of precipitation in Earth system models[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2020,20(4):2303-2317.
APA Weber, Theodore,Corotan, Austin,Hutchinson, Brian,Krayitz, Ben,&Link, Robert.(2020).Technical note: Deep learning for creating surrogate models of precipitation in Earth system models.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(4),2303-2317.
MLA Weber, Theodore,et al."Technical note: Deep learning for creating surrogate models of precipitation in Earth system models".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.4(2020):2303-2317.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Weber, Theodore]的文章
[Corotan, Austin]的文章
[Hutchinson, Brian]的文章
百度学术
百度学术中相似的文章
[Weber, Theodore]的文章
[Corotan, Austin]的文章
[Hutchinson, Brian]的文章
必应学术
必应学术中相似的文章
[Weber, Theodore]的文章
[Corotan, Austin]的文章
[Hutchinson, Brian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。