GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2020.104861
Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning
Liu, Yuan-Yuan1,2; Li, Lei1,3; Liu, Ye-Sen2; Chan, Pak Wai4; Zhang, Wen-Hai5
2020-06-01
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2020
卷号237
文章类型Article
语种英语
国家Peoples R China
英文摘要

Short-duration rainstorm, the main cause of urban waterlogging and mountain torrents, is characterized by sudden, intense, and highly destructive rainfall. Understanding the dynamic temporal and spatial distribution patterns of short-duration rainstorm can help to predict their development processes. In this study, the dynamic temporal and spatial distribution models of various types of short-duration rainstorm events were established by using machine learning (ML) method based on the rainfall data of the recent decade in a Chinese coastal megacity, Shenzhen. The dynamic characteristics of these rainstorm events were extracted by using ML method in conjunction with the Locally Linear Embedding algorithm, which shows a potential capability to predict the developmental trend of a heavy rainstorm before it occurs. Based on the method put forward in the current study, characteristic rainfall process models consistent with the local temporal and spatial distribution characteristics of rainstorms can be designed, which is important to understand the risks of the rainstorms and consequently helpful for the assessment of urban flood insurance, the scientific design of drainage systems and the forecasting and warning of urban waterlogging.


英文关键词Short-duration rainstorm Machine learning Locally linear embedding method Dynamic spatial-temporal distribution Shenzhen
领域地球科学
收录类别SCI-E
WOS记录号WOS:000525323100018
WOS关键词ARTIFICIAL-INTELLIGENCE ; METROPOLITAN-AREA ; RAINFALL ; EXTREMES ; PATTERNS ; IMPACT
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/278899
专题地球科学
作者单位1.Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China;
2.China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China;
3.Shenzhen Natl Climate Observ, Shenzhen 518040, Peoples R China;
4.Hong Kong Observ, Kowloon, Hong Kong 999077, Peoples R China;
5.Shenzhen Acad Severe Storms Sci, Shenzhen 518057, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yuan-Yuan,Li, Lei,Liu, Ye-Sen,et al. Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning[J]. ATMOSPHERIC RESEARCH,2020,237.
APA Liu, Yuan-Yuan,Li, Lei,Liu, Ye-Sen,Chan, Pak Wai,&Zhang, Wen-Hai.(2020).Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning.ATMOSPHERIC RESEARCH,237.
MLA Liu, Yuan-Yuan,et al."Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning".ATMOSPHERIC RESEARCH 237(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yuan-Yuan]的文章
[Li, Lei]的文章
[Liu, Ye-Sen]的文章
百度学术
百度学术中相似的文章
[Liu, Yuan-Yuan]的文章
[Li, Lei]的文章
[Liu, Ye-Sen]的文章
必应学术
必应学术中相似的文章
[Liu, Yuan-Yuan]的文章
[Li, Lei]的文章
[Liu, Ye-Sen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。