GSTDTAP  > 气候变化
DOI10.1088/1748-9326/ab6edd
Leveraging machine learning for predicting flash flood damage in the Southeast US
Alipour, Atieh; Ahmadalipour, Ali; Abbaszadeh, Peyman; Moradkhani, Hamid
2020-02-01
发表期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
出版年2020
卷号15期号:2
文章类型Article
语种英语
国家USA
英文摘要

Flash flood is a recurrent natural hazard with substantial impacts in the Southeast US (SEUS) due to the frequent torrential rainfalls that occur in the region, which are triggered by tropical storms, thunderstorms, and hurricanes. Flash floods are costly natural hazards, primarily due to their rapid onset. Therefore, predicting property damage of flash floods is imperative for proactive disaster management. Here, we present a systematic framework that considers a variety of features explaining different components of risk (i.e. hazard, vulnerability, and exposure), and examine multiple machine learning methods to predict flash flood damage. A large database of flash flood events consisting of more than 14 000 events are assessed for training and testing the methodology, while a multitude of data sources are utilized to acquire reliable information related to each event. A variable selection approach was employed to alleviate the complexity of the dataset and facilitate the model development process. The random forest (RF) method was then used to map the identified input covariates to a target variable (i.e. property damage). The RF model was implemented in two modes: first, as a binary classifier to estimate if a region of interest was damaged in any particular flood event, and then as a regression model to predict the amount of property damage associated with each event. The results indicate that the proposed approach is successful not only for classifying damaging events (with an accuracy of 81%), but also for predicting flash flood damage with a good agreement with the observed property damage. This study is among the few efforts for predicting flash flood damage across a large domain using mesoscale input variables, and the findings demonstrate the effectiveness of the proposed methodology.


英文关键词flash flood risk flood damage machine learning
领域气候变化
收录类别SCI-E ; SSCI
WOS记录号WOS:000522236600001
WOS关键词WATER-RESOURCES APPLICATIONS ; ARTIFICIAL NEURAL-NETWORKS ; EXTREME WEATHER EVENTS ; RISK-ASSESSMENT ; INPUT DETERMINATION ; CLIMATE-CHANGE ; MODELS ; HAZARD ; PRECIPITATION ; VULNERABILITY
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/279167
专题气候变化
作者单位Univ Alabama, Ctr Complex Hydrosyst Res, Dept Civil Construct & Environm Engn, Tuscaloosa, AL 35487 USA
推荐引用方式
GB/T 7714
Alipour, Atieh,Ahmadalipour, Ali,Abbaszadeh, Peyman,et al. Leveraging machine learning for predicting flash flood damage in the Southeast US[J]. ENVIRONMENTAL RESEARCH LETTERS,2020,15(2).
APA Alipour, Atieh,Ahmadalipour, Ali,Abbaszadeh, Peyman,&Moradkhani, Hamid.(2020).Leveraging machine learning for predicting flash flood damage in the Southeast US.ENVIRONMENTAL RESEARCH LETTERS,15(2).
MLA Alipour, Atieh,et al."Leveraging machine learning for predicting flash flood damage in the Southeast US".ENVIRONMENTAL RESEARCH LETTERS 15.2(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alipour, Atieh]的文章
[Ahmadalipour, Ali]的文章
[Abbaszadeh, Peyman]的文章
百度学术
百度学术中相似的文章
[Alipour, Atieh]的文章
[Ahmadalipour, Ali]的文章
[Abbaszadeh, Peyman]的文章
必应学术
必应学术中相似的文章
[Alipour, Atieh]的文章
[Ahmadalipour, Ali]的文章
[Abbaszadeh, Peyman]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。