GSTDTAP  > 气候变化
DOI10.1088/1748-9326/ab76df
Random forest models for PM2.5 speciation concentrations using MISR fractional AODs
Geng, Guannan1,2; Meng, Xia1,3; He, Kebin2; Liu, Yang1
2020-03-01
发表期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
出版年2020
卷号15期号:3
文章类型Article
语种英语
国家USA; Peoples R China
英文摘要

It is increasingly recognized that various chemical components of PM2.5 might have differential toxicities to human health, although such studies are hindered by the sparse or non-existent coverage of ground PM2.5 speciation monitors. The Multi-angle Imaging SpectroRadiometer (MISR) onboard the Terra satellite has an innovative design to provide information about aerosol shape, size and extinction that are more related to PM2.5 speciation concentrations. In this study, we developed random forest models that incorporated ground measurements of PM2.5 species, MISR fractional AODs, simulated PM2.5 speciation concentrations from a chemical transport model (CTM), land use variables and meteorological fields, to predict ground-level daily PM2.5 sulfate, nitrate, organic carbon (OC) and elemental carbon (EC) concentrations in California between 2005 and 2014. Our models had out-of-bag R-2 of 0.72, 0.70, 0.68 and 0.70 for sulfate, nitrate, OC and EC, respectively. We also conducted sensitivity tests to explore the influence of variable selection on model performance. Results show that if there are sufficient ground measurements and predictor data to support the most sophisticated model structure, fractional AODs and total AOD have similar predicting power in estimating PM2.5 species. Otherwise, models using fractional AODs outperform those with total AOD. PM2.5 speciation concentrations are more sensitive to land use variables than other supporting data (e.g., CTM simulations and meteorological information).


英文关键词MISR random forest fine particulate matter speciation exposure assessment satellite remote sensing
领域气候变化
收录类别SCI-E
WOS记录号WOS:000521171700001
WOS关键词FINE PARTICULATE MATTER ; AEROSOL OPTICAL DEPTH ; IMAGING SPECTRORADIOMETER MISR ; CHEMICAL-COMPOSITION ; AIR-POLLUTION ; COMPONENT CONCENTRATIONS ; LUNG-CANCER ; CONSTITUENTS ; METEOROLOGY ; CHEMISTRY
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/279229
专题气候变化
作者单位1.Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, Atlanta, GA 30322 USA;
2.Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China;
3.Fudan Univ, Sch Publ Hlth, Dept Environm Hlth, Shanghai 200032, Peoples R China
推荐引用方式
GB/T 7714
Geng, Guannan,Meng, Xia,He, Kebin,et al. Random forest models for PM2.5 speciation concentrations using MISR fractional AODs[J]. ENVIRONMENTAL RESEARCH LETTERS,2020,15(3).
APA Geng, Guannan,Meng, Xia,He, Kebin,&Liu, Yang.(2020).Random forest models for PM2.5 speciation concentrations using MISR fractional AODs.ENVIRONMENTAL RESEARCH LETTERS,15(3).
MLA Geng, Guannan,et al."Random forest models for PM2.5 speciation concentrations using MISR fractional AODs".ENVIRONMENTAL RESEARCH LETTERS 15.3(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Geng, Guannan]的文章
[Meng, Xia]的文章
[He, Kebin]的文章
百度学术
百度学术中相似的文章
[Geng, Guannan]的文章
[Meng, Xia]的文章
[He, Kebin]的文章
必应学术
必应学术中相似的文章
[Geng, Guannan]的文章
[Meng, Xia]的文章
[He, Kebin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。