GSTDTAP  > 气候变化
DOI10.1029/2019JD031380
Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning
Stirnberg, Roland1,2; Cermak, Jan1,2; Fuchs, Julia1,2; Andersen, Hendrik1,2
2020-02-27
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2020
卷号125期号:4
文章类型Article
语种英语
国家Germany
英文摘要

The quantification of factors leading to harmfully high levels of particulate matter (PM) remains challenging. This study presents a novel approach using a statistical model that is trained to predict hourly concentrations of particles smaller than 10 mu m (PM10) by combining satellite-borne aerosol optical depth (AOD) with meteorological and land-use parameters. The model is shown to accurately predict PM10 (overall R-2 = 0.77, RMSE = 7.44 mu g/m(3)) for measurement sites in Germany. The capability of satellite observations to map and monitor surface air pollution is assessed by investigating the relationship between AOD and PM10 in the same modeling setup. Sensitivity analyses show that important drivers of modeled PM10 include multiday mean wind flow, boundary layer height (BLH), day of year (DOY), and temperature. Different mechanisms associated with elevated PM10 concentrations are identified in winter and summer. In winter, mean predictions of PM10 concentrations >35 mu g/m(3) occur when BLH is below similar to 500 m. Paired with multiday easterly wind flow, mean model predictions surpass 40 mu g/m(3) of PM10. In summer, PM10 concentrations seemingly are less driven by meteorology, but by emission or chemical particle formation processes, which are not included in the model. The relationship between AOD and predicted PM10 concentrations depends to a large extent on ambient meteorological conditions. Results suggest that AOD can be used to assess air quality at ground level in a machine learning approach linking it with meteorological conditions.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000519227000031
WOS关键词AEROSOL OPTICAL DEPTH ; PARTICULATE MATTER CONCENTRATIONS ; LAND-USE REGRESSION ; LOW-EMISSION ZONE ; PM2.5 CONCENTRATIONS ; PM10 CONCENTRATIONS ; BOUNDARY-LAYER ; SOURCE APPORTIONMENT ; PARTICLE FORMATION ; AOD
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280092
专题气候变化
作者单位1.Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany;
2.Karlsruhe Inst Technol, Inst Photogrammetry & Remote Sensing, Karlsruhe, Germany
推荐引用方式
GB/T 7714
Stirnberg, Roland,Cermak, Jan,Fuchs, Julia,et al. Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2020,125(4).
APA Stirnberg, Roland,Cermak, Jan,Fuchs, Julia,&Andersen, Hendrik.(2020).Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,125(4).
MLA Stirnberg, Roland,et al."Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 125.4(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stirnberg, Roland]的文章
[Cermak, Jan]的文章
[Fuchs, Julia]的文章
百度学术
百度学术中相似的文章
[Stirnberg, Roland]的文章
[Cermak, Jan]的文章
[Fuchs, Julia]的文章
必应学术
必应学术中相似的文章
[Stirnberg, Roland]的文章
[Cermak, Jan]的文章
[Fuchs, Julia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。