GSTDTAP  > 气候变化
DOI10.1029/2019JD031884
Synergy of Satellite- and Ground-Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach
Li, Jing1; Kahn, Ralph A.2; Wei, Jing3,4; Carlson, Barbara E.5; Lacis, Andrew A.5; Li, Zhanqing4; Li, Xichen6; Dubovik, Oleg7; Nakajima, Teruyuki8
2020-03-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2020
卷号125期号:5
文章类型Article
语种英语
国家Peoples R China; USA; France; Japan
英文摘要

Satellite- and ground-based remote sensing are two widely used techniques to measure aerosol properties. However, neither is perfect in that satellite retrievals suffer from various sources of uncertainties, and ground observations have limited spatial coverage. In this study, focusing on improving estimates of aerosol information on large scale, we develop a data synergy technique based on the ensemble Kalman filter (EnKF) to effectively combine these two types of measurements and yield a monthly mean aerosol optical depth (AOD) product with global coverage and improved accuracy. We first construct a 474-member ensemble using 11 monthly mean AOD data sets to represent the variability of the AOD field. Then Moderate Resolution Imaging Spectroradiometer AOD retrievals are selected as the background field into which ground-based measurements from 135 Aerosol Robotic Network sites are assimilated using the EnKF. Compared with satellite data, the bias and root-mean-square errors of the combined field are greatly reduced, and correlation coefficients are greatly improved. Moreover, cross validation shows that at locations where surface observations were not assimilated, the reduction in root-mean-square error and bias and the increase in correlation can still reach 20%. Locations where the spatial representativeness of AOD is large or the site density is high are where the greatest changes are typically found. This study shows that the EnKF technique effectively extends the information obtained at surface sites to a larger area, paving the way for combining information from different types of measurements to yield better estimates of aerosol properties as well as their space-time variability.


英文关键词aerosol remote sensing data synergy EnKF
领域气候变化
收录类别SCI-E
WOS记录号WOS:000519602000014
WOS关键词DATA ASSIMILATION ; MAINLAND CHINA ; DATA FUSION ; MODIS ; RETRIEVAL ; LAND ; MISR ; VALIDATION ; PRODUCTS ; AERONET
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280115
专题气候变化
作者单位1.Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China;
2.NASA, Goddard Space Flight Ctr, Earth Sci Div, Greenbelt, MD USA;
3.Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Remote Sensing Sci, Beijing, Peoples R China;
4.Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA;
5.NASA, Goddard Inst Space Studies, New York, NY 10025 USA;
6.Chinese Acad Sci, Inst Atmospher Phys, Int Ctr Climate & Environm Sci, Beijing, Peoples R China;
7.Univ Lille, CNRS, Lab Opt Atmospher, Villeneuve Dascq, France;
8.Japan Aerosp Explorat Agcy, Tsukuba Space Ctr, Tsukuba, Ibaraki, Japan
推荐引用方式
GB/T 7714
Li, Jing,Kahn, Ralph A.,Wei, Jing,et al. Synergy of Satellite- and Ground-Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2020,125(5).
APA Li, Jing.,Kahn, Ralph A..,Wei, Jing.,Carlson, Barbara E..,Lacis, Andrew A..,...&Nakajima, Teruyuki.(2020).Synergy of Satellite- and Ground-Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,125(5).
MLA Li, Jing,et al."Synergy of Satellite- and Ground-Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 125.5(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jing]的文章
[Kahn, Ralph A.]的文章
[Wei, Jing]的文章
百度学术
百度学术中相似的文章
[Li, Jing]的文章
[Kahn, Ralph A.]的文章
[Wei, Jing]的文章
必应学术
必应学术中相似的文章
[Li, Jing]的文章
[Kahn, Ralph A.]的文章
[Wei, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。