GSTDTAP  > 地球科学
DOI10.1175/JAS-D-18-0259.1
Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes
Shan, Yunpeng1,2,9; Wilcox, Eric M.1,2; Gao, Lan1,2,10; Lin, Lin3,11; Mitchell, David L.1,2; Yin, Yan4,5; Zhao, Tianliang4,5; Zhang, Lei6,12,13; Shi, Hongrong7; Gao, Meng8,14
2020-02-01
发表期刊JOURNAL OF THE ATMOSPHERIC SCIENCES
ISSN0022-4928
EISSN1520-0469
出版年2020
卷号77期号:2页码:513-529
文章类型Article
语种英语
国家USA; Peoples R China
英文摘要

Significant uncertainty lies in representing the rain droplet size distribution (DSD) in bulk cloud microphysics schemes and in the derivation of parameters of the function fit to the spectrum from the varying moments of a DSD. Here we evaluate the suitability of gamma distribution functions (GDFs) for fitting rain DSDs against observed disdrometer data. Results illustrate that double-parameter GDFs with prescribed or diagnosed positive spectral shape parameters mu fit rain DSDs better than the Marshall-Palmer distribution function (with mu = 0). The relative errors of fitting the spectrum moments (especially high-order moments) decrease by an order of magnitude [from O(10(2)) to O(10(1))]. Moreover, introduction of a triple-parameter GDF with mathematically solved mu decreases the relative errors to O(10(0)). Based on further investigation of potential combinations of the three prognostic moments for triple-moment cloud microphysical schemes, it is found that the GDF with parameters determined from predictions of the zeroth, third, and fourth moments (the 034 GDF) exhibits the best fit to rain DSDs compared to other moment combinations. Therefore, we suggest that the 034 prognostic moment group should replace the widely accepted 036 group to represent rain DSDs in triple-moment cloud microphysics schemes. An evaluation of the capability of GDFs to represent rain DSDs demonstrates that 034 GDF exhibits accurate fits to all observed DSDs except for rarely occurring extremely wide spectra from heavy precipitation and extremely narrow spectra from drizzle. The knowledge gained from this assessment can also be used to improve cloud microphysics retrieval schemes and data assimilation.


英文关键词Cloud parameterizations Cloud resolving models Clouds
领域地球科学
收录类别SCI-E
WOS记录号WOS:000510513200001
WOS关键词CRYSTAL NUMBER CONCENTRATION ; PART I ; EXPLICIT FORECASTS ; CLOUD ; DISDROMETER
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280275
专题地球科学
作者单位1.Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA;
2.Univ Nevada, Interdisciplinary Program Atmospher Sci, Reno, NV 89557 USA;
3.Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA;
4.Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China;
5.Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, China Meteorol Adm, Key Lab Aerosol Cloud Precipitat, Nanjing, Jiangsu, Peoples R China;
6.Nanjing Univ Informat Sci & Technol, Climate & Weather Disasters Collaborat Innovat Ct, Nanjing, Peoples R China;
7.Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing, Peoples R China;
8.Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA;
9.Brookhaven Natl Lab, Dept Environm & Climate Sci, Upton, NY 11973 USA;
10.Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA;
11.Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA;
12.CMA, Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China;
13.CMA, Chinese Acad Meteorol Sci, Key Lab Atmospher Chem, Beijing, Peoples R China;
14.Hong Kong Baptist Univ, Dept Geog, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Shan, Yunpeng,Wilcox, Eric M.,Gao, Lan,et al. Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes[J]. JOURNAL OF THE ATMOSPHERIC SCIENCES,2020,77(2):513-529.
APA Shan, Yunpeng.,Wilcox, Eric M..,Gao, Lan.,Lin, Lin.,Mitchell, David L..,...&Gao, Meng.(2020).Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes.JOURNAL OF THE ATMOSPHERIC SCIENCES,77(2),513-529.
MLA Shan, Yunpeng,et al."Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes".JOURNAL OF THE ATMOSPHERIC SCIENCES 77.2(2020):513-529.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shan, Yunpeng]的文章
[Wilcox, Eric M.]的文章
[Gao, Lan]的文章
百度学术
百度学术中相似的文章
[Shan, Yunpeng]的文章
[Wilcox, Eric M.]的文章
[Gao, Lan]的文章
必应学术
必应学术中相似的文章
[Shan, Yunpeng]的文章
[Wilcox, Eric M.]的文章
[Gao, Lan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。