Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1175/JAS-D-18-0259.1 |
Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes | |
Shan, Yunpeng1,2,9; Wilcox, Eric M.1,2; Gao, Lan1,2,10; Lin, Lin3,11; Mitchell, David L.1,2; Yin, Yan4,5; Zhao, Tianliang4,5; Zhang, Lei6,12,13; Shi, Hongrong7; Gao, Meng8,14 | |
2020-02-01 | |
发表期刊 | JOURNAL OF THE ATMOSPHERIC SCIENCES
![]() |
ISSN | 0022-4928 |
EISSN | 1520-0469 |
出版年 | 2020 |
卷号 | 77期号:2页码:513-529 |
文章类型 | Article |
语种 | 英语 |
国家 | USA; Peoples R China |
英文摘要 | Significant uncertainty lies in representing the rain droplet size distribution (DSD) in bulk cloud microphysics schemes and in the derivation of parameters of the function fit to the spectrum from the varying moments of a DSD. Here we evaluate the suitability of gamma distribution functions (GDFs) for fitting rain DSDs against observed disdrometer data. Results illustrate that double-parameter GDFs with prescribed or diagnosed positive spectral shape parameters mu fit rain DSDs better than the Marshall-Palmer distribution function (with mu = 0). The relative errors of fitting the spectrum moments (especially high-order moments) decrease by an order of magnitude [from O(10(2)) to O(10(1))]. Moreover, introduction of a triple-parameter GDF with mathematically solved mu decreases the relative errors to O(10(0)). Based on further investigation of potential combinations of the three prognostic moments for triple-moment cloud microphysical schemes, it is found that the GDF with parameters determined from predictions of the zeroth, third, and fourth moments (the 034 GDF) exhibits the best fit to rain DSDs compared to other moment combinations. Therefore, we suggest that the 034 prognostic moment group should replace the widely accepted 036 group to represent rain DSDs in triple-moment cloud microphysics schemes. An evaluation of the capability of GDFs to represent rain DSDs demonstrates that 034 GDF exhibits accurate fits to all observed DSDs except for rarely occurring extremely wide spectra from heavy precipitation and extremely narrow spectra from drizzle. The knowledge gained from this assessment can also be used to improve cloud microphysics retrieval schemes and data assimilation. |
英文关键词 | Cloud parameterizations Cloud resolving models Clouds |
领域 | 地球科学 |
收录类别 | SCI-E |
WOS记录号 | WOS:000510513200001 |
WOS关键词 | CRYSTAL NUMBER CONCENTRATION ; PART I ; EXPLICIT FORECASTS ; CLOUD ; DISDROMETER |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/280275 |
专题 | 地球科学 |
作者单位 | 1.Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA; 2.Univ Nevada, Interdisciplinary Program Atmospher Sci, Reno, NV 89557 USA; 3.Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA; 4.Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China; 5.Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, China Meteorol Adm, Key Lab Aerosol Cloud Precipitat, Nanjing, Jiangsu, Peoples R China; 6.Nanjing Univ Informat Sci & Technol, Climate & Weather Disasters Collaborat Innovat Ct, Nanjing, Peoples R China; 7.Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing, Peoples R China; 8.Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA; 9.Brookhaven Natl Lab, Dept Environm & Climate Sci, Upton, NY 11973 USA; 10.Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA; 11.Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA; 12.CMA, Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China; 13.CMA, Chinese Acad Meteorol Sci, Key Lab Atmospher Chem, Beijing, Peoples R China; 14.Hong Kong Baptist Univ, Dept Geog, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Shan, Yunpeng,Wilcox, Eric M.,Gao, Lan,et al. Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes[J]. JOURNAL OF THE ATMOSPHERIC SCIENCES,2020,77(2):513-529. |
APA | Shan, Yunpeng.,Wilcox, Eric M..,Gao, Lan.,Lin, Lin.,Mitchell, David L..,...&Gao, Meng.(2020).Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes.JOURNAL OF THE ATMOSPHERIC SCIENCES,77(2),513-529. |
MLA | Shan, Yunpeng,et al."Evaluating Errors in Gamma-Function Representations of the Raindrop Size Distribution: A Method for Determining the Optimal Parameter Set for Use in Bulk Microphysics Schemes".JOURNAL OF THE ATMOSPHERIC SCIENCES 77.2(2020):513-529. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论