GSTDTAP  > 地球科学
DOI10.1175/JAS-D-19-0106.1
Reduction of Bias from Parameter Variance in Geophysical Data Estimation: Method and Application to Ice Water Content and Sedimentation Flux Estimated from Lidar
Bolot, Maximilien; Fueglistaler, Stephan
2020-03-01
发表期刊JOURNAL OF THE ATMOSPHERIC SCIENCES
ISSN0022-4928
EISSN1520-0469
出版年2020
卷号77期号:3页码:835-857
文章类型Article
语种英语
国家USA
英文摘要

This paper addresses issues of statistical misrepresentation of the a priori parameters (henceforth called ancillary parameters) used in geophysical data estimation. Parameterizations using ancillary data are frequently needed to derive geophysical data of interest from remote measurements. Empirical fits to the ancillary data that do not preserve the distribution of such data may induce substantial bias. A semianalytical averaging approach based on Taylor expansion is presented to improve estimated cirrus ice water content and sedimentation flux for a range of volume extinction coefficients retrieved from spaceborne lidar observations by CALIOP combined with the estimated distribution of ancillary data from in situ aircraft measurements of ice particle microphysical parameters and temperature. It is shown that, given an idealized distribution of input parameters, the approach performs well against Monte Carlo benchmark predictions. Using examples with idealized distributions at the mean temperature for the tropics at 15 km, it is estimated that the commonly neglected variance observed in in situ measurements of effective diameters may produce a worst-case estimation bias spanning up to a factor of 2. For ice sedimentation flux, a similar variance in particle size distributions and extinctions produces a worst-case estimation bias of a factor of 9. The value of the bias is found to be mostly set by the correlation coefficient between extinction and ice effective diameter, which in this test ranged between all possible values. Systematic reporting of variances and covariances in the ancillary data and between data and observed quantities would allow for more accurate observational estimates.


英文关键词Cirrus clouds Cloud retrieval Lidars Lidar observations Remote sensing Bias Statistics
领域地球科学
收录类别SCI-E
WOS记录号WOS:000515830600002
WOS关键词IN-SITU OBSERVATIONS ; LARGE-SCALE MODELS ; SIZE DISTRIBUTIONS ; SPACEBORNE LIDAR ; CALIPSO LIDAR ; PART II ; MICROPHYSICS ; CLOUDS ; VARIABILITY ; EXTINCTION
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280301
专题地球科学
作者单位Princeton Univ, Princeton, NJ 08544 USA
推荐引用方式
GB/T 7714
Bolot, Maximilien,Fueglistaler, Stephan. Reduction of Bias from Parameter Variance in Geophysical Data Estimation: Method and Application to Ice Water Content and Sedimentation Flux Estimated from Lidar[J]. JOURNAL OF THE ATMOSPHERIC SCIENCES,2020,77(3):835-857.
APA Bolot, Maximilien,&Fueglistaler, Stephan.(2020).Reduction of Bias from Parameter Variance in Geophysical Data Estimation: Method and Application to Ice Water Content and Sedimentation Flux Estimated from Lidar.JOURNAL OF THE ATMOSPHERIC SCIENCES,77(3),835-857.
MLA Bolot, Maximilien,et al."Reduction of Bias from Parameter Variance in Geophysical Data Estimation: Method and Application to Ice Water Content and Sedimentation Flux Estimated from Lidar".JOURNAL OF THE ATMOSPHERIC SCIENCES 77.3(2020):835-857.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bolot, Maximilien]的文章
[Fueglistaler, Stephan]的文章
百度学术
百度学术中相似的文章
[Bolot, Maximilien]的文章
[Fueglistaler, Stephan]的文章
必应学术
必应学术中相似的文章
[Bolot, Maximilien]的文章
[Fueglistaler, Stephan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。