GSTDTAP  > 资源环境科学
DOI10.1029/2019WR024880
Snow Depth Patterns in a High Mountain Andean Catchment from Satellite Optical Tristereoscopic Remote Sensing
Shaw, Thomas E.1; Gascoin, Simon2; Mendoza, Pablo A.1,3; Pellicciotti, Francesca4,5; McPhee, James1,3
2020-02-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2020
卷号56期号:2
文章类型Article
语种英语
国家Chile; France; Switzerland; England
英文摘要

Obtaining detailed information about high mountain snowpacks is often limited by insufficient ground-based observations and uncertainty in the (re)distribution of solid precipitation. We utilize high-resolution optical images from Pleiades satellites to generate a snow depth map, at a spatial resolution of 4 m, for a high mountain catchment of central Chile. Results are negatively biased (median difference of -0.22 m) when compared against observations from a terrestrial Light Detection And Ranging scan, though replicate general snow depth variability well. Additionally, the Pleiades dataset is subject to data gaps (17% of total pixels), negative values for shallow snow (12%), and noise on slopes >40-50 degrees (2%). We correct and filter the Pleiades snow depths using surface classification techniques of snow-free areas and a random forest model for data gap filling. Snow depths (with an estimated error of similar to 0.36 m) average 1.66 m and relate well to topographical parameters such as elevation and northness in a similar way to previous studies. However, estimations of snow depth based upon topography (TOPO) or physically based modeling (DBSM) cannot resolve localized processes (i.e., avalanching or wind scouring) that are detected by Pleiades, even when forced with locally calibrated data. Comparing these alternative model approaches to corrected Pleiades snow depths reveals total snow volume differences between -28% (DBSM) and +54% (TOPO) for the catchment and large differences across most elevation bands. Pleiades represents an important contribution to understanding snow accumulation at sparsely monitored catchments, though ideally requires a careful systematic validation procedure to identify catchment-scale biases and errors in the snow depth derivation.


英文关键词Snow depth Pleiades Chile Mountain LiDAR
领域资源环境
收录类别SCI-E
WOS记录号WOS:000535672800009
WOS关键词DEBRIS-COVERED GLACIERS ; CHANGRI NUP GLACIER ; WATER EQUIVALENT ; SPANISH PYRENEES ; ALPINE TERRAIN ; MASS-BALANCE ; DRY ANDES ; ENERGY ; MODEL ; MELT
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280554
专题资源环境科学
作者单位1.Univ Chile, Adv Min Technol Ctr, Santiago, Chile;
2.Ctr Etud Spatiales Biosphere CESBIO, Toulouse, France;
3.Univ Chile, Dept Civil Engn, Santiago, Chile;
4.Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland;
5.Northumbria Univ, Dept Geog, Newcastle Upon Tyne, Tyne & Wear, England
推荐引用方式
GB/T 7714
Shaw, Thomas E.,Gascoin, Simon,Mendoza, Pablo A.,et al. Snow Depth Patterns in a High Mountain Andean Catchment from Satellite Optical Tristereoscopic Remote Sensing[J]. WATER RESOURCES RESEARCH,2020,56(2).
APA Shaw, Thomas E.,Gascoin, Simon,Mendoza, Pablo A.,Pellicciotti, Francesca,&McPhee, James.(2020).Snow Depth Patterns in a High Mountain Andean Catchment from Satellite Optical Tristereoscopic Remote Sensing.WATER RESOURCES RESEARCH,56(2).
MLA Shaw, Thomas E.,et al."Snow Depth Patterns in a High Mountain Andean Catchment from Satellite Optical Tristereoscopic Remote Sensing".WATER RESOURCES RESEARCH 56.2(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shaw, Thomas E.]的文章
[Gascoin, Simon]的文章
[Mendoza, Pablo A.]的文章
百度学术
百度学术中相似的文章
[Shaw, Thomas E.]的文章
[Gascoin, Simon]的文章
[Mendoza, Pablo A.]的文章
必应学术
必应学术中相似的文章
[Shaw, Thomas E.]的文章
[Gascoin, Simon]的文章
[Mendoza, Pablo A.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。