GSTDTAP  > 资源环境科学
DOI10.1029/2019WR026444
Improving Global Monthly and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data Sets
Xu, Lei1,2; Chen, Nengcheng1,3; Moradkhani, Hamid2; Zhang, Xiang1; Hu, Chuli4,5
2020-03-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2020
卷号56期号:3
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Precipitation estimation at a global scale is essential for global water cycle simulation and water resources management. The precipitation estimation from gauge-based, satellite retrieval, and reanalysis data sets has heterogeneous uncertainties for different areas at global land. Here, the 13 monthly precipitation data sets and the 11 daily precipitation data sets are analyzed to examine the relative uncertainty of individual data based on the developed generalized three-cornered hat (TCH) method. The generalized TCH method can be used to evaluate the uncertainty of multiple (>3) precipitation products in an iterative optimization process. A weighting scheme is designed to merge the individual precipitation data sets to generate a new weighted precipitation using the inverse error variance-covariance matrix of TCH estimated uncertainty. The weighted precipitation is then validated using gauged data with the minimal uncertainty among all the individual products. The merged results indicate the superiority of the weighted precipitation with substantially reduced random errors over individual data sets and a state-of-the-art multisatellite merged product, namely, the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement at validated areas. The weighted data set can largely reproduce the interannual and seasonal variations of regional precipitation. The TCH-based merging results outperform two other mean-based merging methods at both monthly and daily scales. Overall, the merging scheme based on the generalized TCH method is effective to produce a new precipitation data set integrating information from multiple products for hydrometeorological applications.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000538000800040
WOS关键词CLIMATOLOGY CENTER ; PASSIVE MICROWAVE ; DATA PRODUCTS ; AMSR-E ; UNCERTAINTY ; SATELLITE ; SYSTEM ; TEMPERATURE ; PERFORMANCE ; ENSEMBLE
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280583
专题资源环境科学
作者单位1.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China;
2.Univ Alabama, Dept Civil Construct & Environm Engn, Ctr Complex Hydrosyst Researh, Tuscaloosa, AL USA;
3.Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China;
4.China Univ Geosci, Sch Geog & Informat Engn, Wuhan, Peoples R China;
5.China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Wuhan, Peoples R China
推荐引用方式
GB/T 7714
Xu, Lei,Chen, Nengcheng,Moradkhani, Hamid,et al. Improving Global Monthly and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data Sets[J]. WATER RESOURCES RESEARCH,2020,56(3).
APA Xu, Lei,Chen, Nengcheng,Moradkhani, Hamid,Zhang, Xiang,&Hu, Chuli.(2020).Improving Global Monthly and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data Sets.WATER RESOURCES RESEARCH,56(3).
MLA Xu, Lei,et al."Improving Global Monthly and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data Sets".WATER RESOURCES RESEARCH 56.3(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Lei]的文章
[Chen, Nengcheng]的文章
[Moradkhani, Hamid]的文章
百度学术
百度学术中相似的文章
[Xu, Lei]的文章
[Chen, Nengcheng]的文章
[Moradkhani, Hamid]的文章
必应学术
必应学术中相似的文章
[Xu, Lei]的文章
[Chen, Nengcheng]的文章
[Moradkhani, Hamid]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。