GSTDTAP  > 资源环境科学
DOI10.1029/2019WR025474
Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems With a Kalman-Inspired Proposal Distribution
Zhang, Jiangjiang1; Vrugt, Jasper A.1,2,3; Shi, Xiaoqing4; Lin, Guang5,6; Wu, Laosheng7; Zeng, Lingzao
2020-03-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2020
卷号56期号:3
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Bayesian analysis is widely used in science and engineering for real-time forecasting, decision making, and to help unravel the processes that explain the observed data. These data are some deterministic and/or stochastic transformations of the underlying parameters. A key task is then to summarize the posterior distribution of these parameters. When models become too difficult to analyze analytically, Monte Carlo methods can be used to approximate the target distribution. Of these, Markov chain Monte Carlo (MCMC) methods are particularly powerful. Such methods generate a random walk through the parameter space and, under strict conditions of reversibility and ergodicity, will successively visit solutions with frequency proportional to the underlying target density. This requires a proposal distribution that generates candidate solutions starting from an arbitrary initial state. The speed of the sampled chains converging to the target distribution deteriorates rapidly, however, with increasing parameter dimensionality. In this paper, we introduce a new proposal distribution that enhances significantly the efficiency of MCMC simulation for highly parameterized models. This proposal distribution exploits the cross covariance of model parameters, measurements, and model outputs and generates candidate states much alike the analysis step in the Kalman filter. We embed the Kalman-inspired proposal distribution in the DiffeRential Evolution Adaptive Metropolis algorithm during burn-in and present several numerical experiments with complex, high-dimensional, or multimodal target distributions. Results demonstrate that this new proposal distribution can greatly improve simulation efficiency of MCMC. Specifically, we observe a speedup on the order of 10-30 times for groundwater models with more than 100 parameters.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000538000800023
WOS关键词MONTE-CARLO-SIMULATION ; DIFFERENTIAL EVOLUTION ; UNCERTAINTY ASSESSMENT ; MARGINAL LIKELIHOOD ; ENSEMBLE SMOOTHER ; DATA ASSIMILATION ; CHAIN ; OPTIMIZATION ; CONVERGENCE ; ALGORITHMS
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280596
专题资源环境科学
作者单位1.Zhejiang Univ, Zhejiang Prov Key Lab Agr Resources & Environm, Inst Soil & Water Resources & Environm Sci, Coll Environm & Resource Sci, Hangzhou, Peoples R China;
2.Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA;
3.Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA;
4.Nanjing Univ, Key Lab Surficial Geochem, Minist Educ, Sch Earth Sci & Engn, Nanjing, Peoples R China;
5.Purdue Univ, Dept Math, W Lafayette, IN 47907 USA;
6.Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA;
7.Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA
推荐引用方式
GB/T 7714
Zhang, Jiangjiang,Vrugt, Jasper A.,Shi, Xiaoqing,et al. Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems With a Kalman-Inspired Proposal Distribution[J]. WATER RESOURCES RESEARCH,2020,56(3).
APA Zhang, Jiangjiang,Vrugt, Jasper A.,Shi, Xiaoqing,Lin, Guang,Wu, Laosheng,&Zeng, Lingzao.(2020).Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems With a Kalman-Inspired Proposal Distribution.WATER RESOURCES RESEARCH,56(3).
MLA Zhang, Jiangjiang,et al."Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems With a Kalman-Inspired Proposal Distribution".WATER RESOURCES RESEARCH 56.3(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiangjiang]的文章
[Vrugt, Jasper A.]的文章
[Shi, Xiaoqing]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiangjiang]的文章
[Vrugt, Jasper A.]的文章
[Shi, Xiaoqing]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiangjiang]的文章
[Vrugt, Jasper A.]的文章
[Shi, Xiaoqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。