GSTDTAP  > 地球科学
DOI10.1038/s41586-020-2284-y
Population flow drives spatio-temporal distribution of COVID-19 in China
Fernandez, Diego Carlos1; Komal, Ruchi1; Langel, Jennifer1; Ma, Jun1; Duy, Phan Q.1,3; Penzo, Mario A.1; Zhao, Haiqing2; Hattar, Samer1
2020-05-01
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
文章类型Article;Early Access
语种英语
国家Peoples R China; Sweden; USA
英文关键词

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics(1-4). Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a spatio-temporal ' risk source' model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.


Modelling of population flows in China enables the forecasting of the distribution of confirmed cases of COVID-19 and the identification of areas at high risk of SARS-CoV-2 transmission at an early stage.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000541034400001
WOS关键词HUMAN MOBILITY ; TRANSPORTATION ; PREDICTABILITY ; NETWORK
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281032
专题地球科学
资源环境科学
气候变化
作者单位1.NIMH, NIH, Bethesda, MD 20892 USA;
2.Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA;
3.Yale Univ, MSTP, New Haven, CT USA
推荐引用方式
GB/T 7714
Fernandez, Diego Carlos,Komal, Ruchi,Langel, Jennifer,et al. Population flow drives spatio-temporal distribution of COVID-19 in China[J]. NATURE,2020.
APA Fernandez, Diego Carlos.,Komal, Ruchi.,Langel, Jennifer.,Ma, Jun.,Duy, Phan Q..,...&Hattar, Samer.(2020).Population flow drives spatio-temporal distribution of COVID-19 in China.NATURE.
MLA Fernandez, Diego Carlos,et al."Population flow drives spatio-temporal distribution of COVID-19 in China".NATURE (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fernandez, Diego Carlos]的文章
[Komal, Ruchi]的文章
[Langel, Jennifer]的文章
百度学术
百度学术中相似的文章
[Fernandez, Diego Carlos]的文章
[Komal, Ruchi]的文章
[Langel, Jennifer]的文章
必应学术
必应学术中相似的文章
[Fernandez, Diego Carlos]的文章
[Komal, Ruchi]的文章
[Langel, Jennifer]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。