GSTDTAP  > 地球科学
DOI10.1038/s41586-020-2027-0
Virtual discovery of melatonin receptor ligands to modulate circadian rhythms
Huang, Weijiao1; Masureel, Matthieu1; Qu, Qianhui1,2; Janetzko, John1; Inoue, Asuka3; Kato, Hideaki E.1,7; Robertson, Michael J.1,2; Nguyen, Khanh C.4,5; Glenn, Jeffrey S.4,5; Skiniotis, Georgios1,2,6; Kobilka, Brian K.1
2020-03-01
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
卷号579期号:7800页码:609-+
文章类型Article
语种英语
国家USA; Ukraine
英文关键词

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle(1-4). The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep(5,6) and depression(1-4,7-9). Despite their importance, few in vivo active MT1-selective ligands have been reported(2,8,10-12), hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries. A computational screen of an ultra-large virtual library against the structure of the melatonin receptor found nanomolar ligands, and ultimately two selective MT1 inverse agonists that induced phase advancement of the mouse circadian clock when given at subjective dusk.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000520406700001
WOS关键词SUPRACHIASMATIC NUCLEUS ; PHASE ; MT1 ; SLEEP ; ANTAGONISTS ; DESIGN ; PHARMACOLOGY ; AGOMELATINE ; LUZINDOLE ; AGONIST
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281142
专题地球科学
资源环境科学
气候变化
作者单位1.Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA;
2.Stanford Univ, Sch Med, Dept Biol Struct, Stanford, CA 94305 USA;
3.Tohoku Univ, Grad Sch Pharmaceut Sci, Sendai, Miyagi, Japan;
4.Stanford Univ, Dept Med, Stanford, CA 94305 USA;
5.Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA;
6.Stanford Univ, SLAC Natl Accelerator Lab, Dept Photon Sci, Menlo Pk, CA 94025 USA;
7.Univ Tokyo, Komaba Inst Sci, Tokyo, Japan
推荐引用方式
GB/T 7714
Huang, Weijiao,Masureel, Matthieu,Qu, Qianhui,et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms[J]. NATURE,2020,579(7800):609-+.
APA Huang, Weijiao.,Masureel, Matthieu.,Qu, Qianhui.,Janetzko, John.,Inoue, Asuka.,...&Kobilka, Brian K..(2020).Virtual discovery of melatonin receptor ligands to modulate circadian rhythms.NATURE,579(7800),609-+.
MLA Huang, Weijiao,et al."Virtual discovery of melatonin receptor ligands to modulate circadian rhythms".NATURE 579.7800(2020):609-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Weijiao]的文章
[Masureel, Matthieu]的文章
[Qu, Qianhui]的文章
百度学术
百度学术中相似的文章
[Huang, Weijiao]的文章
[Masureel, Matthieu]的文章
[Qu, Qianhui]的文章
必应学术
必应学术中相似的文章
[Huang, Weijiao]的文章
[Masureel, Matthieu]的文章
[Qu, Qianhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。