GSTDTAP  > 地球科学
DOI10.1038/s41586-019-1799-6
International evaluation of an AI system for breast cancer screening
McKinney, Scott Mayer1; Sieniek, Marcin1; Godbole, Varun1; Godwin, Jonathan2; Antropova, Natasha2; Ashrafian, Hutan3,4; Back, Trevor2; Chesus, Mary2; Corrado, Greg C.1; Darzi, Ara3,4,5; Etemadi, Mozziyar6; Garcia-Vicente, Florencia6; Gilbert, Fiona J.7; Halling-Brown, Mark8; Hassabis, Demis2; Jansen, Sunny9; Karthikesalingam, Alan10; Kelly, Christopher J.10; King, Dominic10; Ledsam, Joseph R.2; Melnick, David6; Mostofi, Hormuz1; Peng, Lily1; Reicher, Joshua Jay11,12; Romera-Paredes, Bernardino2; Sidebottom, Richard13,14; Suleyman, Mustafa2; Tse, Daniel1; Young, Kenneth C.8; De Fauw, Jeffrey2; Shetty, Shravya1
2020-06-01
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
卷号577期号:7788页码:89-+
文章类型Article
语种英语
国家USA; England
英文关键词

Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful(1). Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives(2). Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000505617400032
WOS关键词COMPUTER-AIDED DETECTION ; OPERATING CHARACTERISTIC CURVES ; DIAGNOSTIC-ACCURACY ; CONFIDENCE-INTERVALS ; IMAGE-ANALYSIS ; MAMMOGRAPHY ; PERFORMANCE ; TESTS ; IMPACT ; WOMEN
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281186
专题地球科学
资源环境科学
气候变化
作者单位1.Google Hlth, Palo Alto, CA 94304 USA;
2.DeepMind, London, England;
3.Imperial Coll London, Dept Surg & Canc, London, England;
4.Imperial Coll London, Inst Global Hlth Innovat, London, England;
5.Imperial Coll London, Canc Res UK Imperial Ctr, London, England;
6.Northwestern Med, Chicago, IL USA;
7.Univ Cambridge, Dept Radiol, Cambridge Biomed Res Ctr, Cambridge, England;
8.Royal Surrey Cty Hosp, Guildford, Surrey, England;
9.Verily Life Sci, San Francisco, CA USA;
10.Google Hlth, London, England;
11.Stanford Hlth Care, Palo Alto, CA USA;
12.Palo Alto Vet Affairs, Palo Alto, CA USA;
13.Royal Marsden Hosp, London, England;
14.Thirlestaine Breast Ctr, Cheltenham, Glos, England
推荐引用方式
GB/T 7714
McKinney, Scott Mayer,Sieniek, Marcin,Godbole, Varun,et al. International evaluation of an AI system for breast cancer screening[J]. NATURE,2020,577(7788):89-+.
APA McKinney, Scott Mayer.,Sieniek, Marcin.,Godbole, Varun.,Godwin, Jonathan.,Antropova, Natasha.,...&Shetty, Shravya.(2020).International evaluation of an AI system for breast cancer screening.NATURE,577(7788),89-+.
MLA McKinney, Scott Mayer,et al."International evaluation of an AI system for breast cancer screening".NATURE 577.7788(2020):89-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[McKinney, Scott Mayer]的文章
[Sieniek, Marcin]的文章
[Godbole, Varun]的文章
百度学术
百度学术中相似的文章
[McKinney, Scott Mayer]的文章
[Sieniek, Marcin]的文章
[Godbole, Varun]的文章
必应学术
必应学术中相似的文章
[McKinney, Scott Mayer]的文章
[Sieniek, Marcin]的文章
[Godbole, Varun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。