GSTDTAP  > 地球科学
DOI10.1038/s41586-020-2036-z
High-pressure strengthening in ultrafine-grained metals
Yoshida, Kenichi1; Gowers, Kate H. C.2; Lee-Six, Henry1; Chandrasekharan, Deepak P.2; Coorens, Tim1; Maughan, Elizabeth F.2; Beal, Kathryn1; Menzies, Andrew1; Millar, Fraser R.2; Anderson, Elizabeth1; Clarke, Sarah E.2; Pennycuick, Adam2; Thakrar, Ricky M.2,3; Butler, Colin R.2,3
2020-01-29
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
文章类型Article;Early Access
语种英语
国家Peoples R China; USA
英文关键词

High-pressure diamond anvil cell experiments reveal that compression strengthening of nanocrystalline nickel increases as its grain sizes decrease to 3 nanometres, owing to dislocation hardening and suppression of grain boundary plasticity.


The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres(1,2). As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres(3). Here we track in situ the yield stress and deformation texturing of pure nickel samples of various average grain sizes using a diamond anvil cell coupled with radial X-ray diffraction. Our high-pressure experiments reveal continuous strengthening in samples with grain sizes from 200 nanometres down to 3 nanometres, with the strengthening enhanced (rather than reduced) at grain sizes smaller than 20 nanometres. We achieve a yield strength of approximately 4.2 gigapascals in our 3-nanometre-grain-size samples, ten times stronger than that of a commercial nickel material. A maximum flow stress of 10.2 gigapascals is obtained in nickel of grain size 3 nanometres for the pressure range studied here. We see similar patterns of compression strengthening in gold and palladium samples down to the smallest grain sizes. Simulations and transmission electron microscopy reveal that the high strength observed in nickel of grain size 3 nanometres is caused by the superposition of strengthening mechanisms: both partial and full dislocation hardening plus suppression of grain boundary plasticity. These insights contribute to the ongoing search for ultrastrong metals via materials engineering.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000515476700001
WOS关键词MECHANICAL-PROPERTIES ; NANOCRYSTALLINE ; DEFORMATION ; NICKEL ; PLASTICITY ; TEXTURE ; MAXIMUM
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281502
专题地球科学
资源环境科学
气候变化
作者单位1.Wellcome Trust Sanger Inst, Canc Genome Project, Hinxton, England;
2.UCL, UCL Resp, Lungs Living Res Ctr, London, England;
3.Univ Coll London Hosp, Dept Thorac Med, London, England;
4.Kyoto Univ, Dept Pathol & Tumor Biol, Kyoto, Japan;
5.UCL, UCL Canc Inst, CRUK Lung Canc Ctr Excellence, London, England;
6.Univ Cambridge, Stem Cell Inst, Cambridge, England
推荐引用方式
GB/T 7714
Yoshida, Kenichi,Gowers, Kate H. C.,Lee-Six, Henry,et al. High-pressure strengthening in ultrafine-grained metals[J]. NATURE,2020.
APA Yoshida, Kenichi.,Gowers, Kate H. C..,Lee-Six, Henry.,Chandrasekharan, Deepak P..,Coorens, Tim.,...&Butler, Colin R..(2020).High-pressure strengthening in ultrafine-grained metals.NATURE.
MLA Yoshida, Kenichi,et al."High-pressure strengthening in ultrafine-grained metals".NATURE (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yoshida, Kenichi]的文章
[Gowers, Kate H. C.]的文章
[Lee-Six, Henry]的文章
百度学术
百度学术中相似的文章
[Yoshida, Kenichi]的文章
[Gowers, Kate H. C.]的文章
[Lee-Six, Henry]的文章
必应学术
必应学术中相似的文章
[Yoshida, Kenichi]的文章
[Gowers, Kate H. C.]的文章
[Lee-Six, Henry]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。