GSTDTAP  > 气候变化
DOIDOI10.1088/1748-9326/ab8cd0
Evaluating CMIP6 model fidelity at simulating non-Gaussian temperature distribution tails
A J Catalano; P C Loikith; J D Neelin
2020-07-06
发表期刊Environmental Research Letters
出版年2020
英文摘要

Under global warming, changes in extreme temperatures will manifest in more complex ways in locations where temperature distribution tails deviate from Gaussian. Confidence in global climate model (GCM) projections of temperature extremes and associated impacts therefore relies on the realism of simulated temperature distribution tail behavior under current climate conditions. This study evaluates the ability of the latest state-of-the-art ensemble of GCMs from the Coupled Model Intercomparison Project phase six (CMIP6), to capture historical global surface temperature distribution tail shape in hemispheric winter and summer seasons. Comparisons with a global reanalysis product reveal strong agreement on coherent spatial patterns of longer- and shorter-than-Gaussian tails for both sides of the temperature distribution, suggesting that CMIP6 GCMs are broadly capturing tail behavior for plausible physical and dynamical reasons. On a global scale, most GCMs are reasonably skilled at capturing historical tail shape, exhibiting high pattern correlations with reanalysis and low values of normalized centered root mean square difference, with multi-model mean values generally outperforming individual GCMs in these metrics. A division of the domain into sub-regions containing robust shift ratio patterns indicates higher performance over Australia and an overestimation of the degree to which tails deviate from Gaussian over southeastern Asia in all cases, whereas model skill over other regions varies depending on season and tail of the temperature distribution. For example, model performance during boreal winter indicates robust agreement (>85% models) with reanalysis for shorter-than-Gaussian warm tails over the Northern Hemisphere, whereas cold-tail shape is generally mischaracterized by GCMs over western Russia. Although there is spatial and model variability, overall, results highlight the capability of the CMIP6 ensemble in capturing seasonal temperature distribution deviations from Gaussianity, boosting confidence in model utility and providing insight into the complexity of future changes in temperature extremes.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/282667
专题气候变化
推荐引用方式
GB/T 7714
A J Catalano,P C Loikith,J D Neelin. Evaluating CMIP6 model fidelity at simulating non-Gaussian temperature distribution tails[J]. Environmental Research Letters,2020.
APA A J Catalano,P C Loikith,&J D Neelin.(2020).Evaluating CMIP6 model fidelity at simulating non-Gaussian temperature distribution tails.Environmental Research Letters.
MLA A J Catalano,et al."Evaluating CMIP6 model fidelity at simulating non-Gaussian temperature distribution tails".Environmental Research Letters (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[A J Catalano]的文章
[P C Loikith]的文章
[J D Neelin]的文章
百度学术
百度学术中相似的文章
[A J Catalano]的文章
[P C Loikith]的文章
[J D Neelin]的文章
必应学术
必应学术中相似的文章
[A J Catalano]的文章
[P C Loikith]的文章
[J D Neelin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。