GSTDTAP  > 气候变化
DOI10.1126/science.abd1213
Bats navigate with cognitive maps
M. Brock Fenton
2020-07-10
发表期刊Science
出版年2020
英文摘要A cognitive map can allow an animal to navigate from its current position to an undetected goal. There is a long-standing, ongoing debate about which animals have and use cognitive maps ([ 1 ][1]–[ 3 ][2]). On pages 188 and 194 of this issue, Toledo et al. ([ 4 ][3]) and Harten et al. ([ 5 ][4]), respectively, show that Egyptian fruit bats (see the figure) use cognitive maps, as evidenced by taking previously unused shortcuts. These are movements between two known sites that are beyond detectable range of one another. Shortcuts are strong evidence of cognitive maps. Toledo et al. used ATLAS, a new high-throughput tracking system, to document the travels and home ranges of 172 tagged Egyptian fruit bats over 3449 bat-nights across 4 years. Each tag weighed 4 g (<4% of the animal's body mass) and provided over 18 million localizations. The ATLAS system simultaneously tracked dozens of animals with high resolution and accuracy. Using direct observations and translocation experiments, Toledo et al. showed that to get to fruit trees, tagged bats repeatedly used goal-directed, long, straight flights rather than random searches. Tagged bats also commonly took shortcuts to go directly to fruit trees. The researchers used trajectory analyses and time-lag embedding to rule out nonmap strategies. Their analyses revealed that the tagged bats did not systematically follow known routes, nor did they directly sense cues such as landmarks or beacons. These animals relied on a cognitive map frame of reference for their current positions in relation to a goal that they had not yet detected. Some Egyptian fruit bats have home ranges of over 100 km2, and earlier research revealed that tagged animals typically flew directly (in a straight line) to specific fruit trees within their home ranges ([ 6 ][5]). But, as Toledo et al. cautioned, they lack data about the early experience of the animals that they tracked. Harten et al. addressed this shortcoming by establishing an in-house colony of Egyptian fruit bats on campus. By day, bats in the colony roosted on site and, at night, freely foraged in the surrounding area. The researchers collected data using continuous Global Positioning System tags (0.99 g, or 0.42 g) affixed to the bats. Tag readers in the roost and at nearby sites downloaded data about the bats' comings and goings and their specific routes. Harten et al. focused on data from the flights of 22 Egyptian fruit bat pups from their initial flights outdoors through the first months of their lives. These bats gradually increased the sizes of their home ranges, after 70 days reaching typical adult areas of 60 km2. Over time, after feeding at local trees within their home ranges, young animals sometimes made exploratory flights that involved going well beyond their normal home ranges before returning to the roost. Young bats also took shortcuts, identified by conservative criteria. To be considered a shortcut, at least 50% of the trajectory of a movement had to be original, and the destination at least 100 m from any other site the bat had previously visited. These stringent criteria reduced the numbers of recorded shortcuts. Like other bats, Egyptian fruit bats are long-lived (often over 20 years in the wild), have low reproductive output (usually one young per litter), large neonate size (25% of mother's mass), and often roost in social groups ([ 7 ][6], [ 8 ][7]). Adult masses range from 80 to 170 g, making them well suited for work involving relatively large tags. Advances in the capacity of tags, such as those used in either study, have greatly increased our knowledge of bats. Further embellishments involve tags that record video and audio from free-flying bats ([ 9 ][8]). In addition, proximity tags ([ 10 ][9]) provide new insight into social interactions of bats. Researchers have used active tags on bats for over 50 years, typically keeping tag size to <5% of bat body mass ([ 11 ][10]). Yet, most of the ∼1400 species of bats weigh <50 g as adults, putting many, if not most, beyond the range of current tag technology ([ 12 ][11]). Documenting the home ranges of bats will prove central to their conservation, which might mean setting aside and protecting larger areas. The hallmarks of these two groups of researchers include innovative use of tags, thorough and consistent analyses, and demanding criteria, as well as exhaustive long-term field work and strong collaborations. Their results convincingly show that Egyptian fruit bats navigate using cognitive maps. Together, both studies ([ 4 ][3], [ 5 ][4]) advance our knowledge and understanding of cognitive maps and open the door to learning how widespread this cognitive behavior may be among animals. Further advances in tag technology will expand our knowledge of how bats learn their home ranges, from nursery colonies to hibernation sites. Such developments will put other findings in broader perspective such as bats' use of food resources with predictable distribution in space and time. Details about social organization and interactions also can further elucidate bats' roles as disease vectors ([ 13 ][12], [ 14 ][13]). 1. [↵][14]1. E. C. Tolman , Psych. Rev. 55, 189 (1948). [OpenUrl][15][CrossRef][16] 2. 1. D. R. Griffin , Animal Minds (Univ. of Chicago Press, 1992). 3. [↵][17]1. M. Geva-Sagiv et al ., Nat. Rev. Neurosci. 16, 94 (2015). [OpenUrl][18][CrossRef][19][PubMed][20] 4. [↵][21]1. S. Toledo et al ., Science 369, 188 (2020). [OpenUrl][22][Abstract/FREE Full Text][23] 5. [↵][24]1. L. Harten et al ., Science 369, 194 (2020). [OpenUrl][25][Abstract/FREE Full Text][26] 6. [↵][27]1. A. Tsoar et al ., Proc. Natl. Acad. Sci. U.S.A. 108, E718 (2011). [OpenUrl][28][Abstract/FREE Full Text][29] 7. [↵][30]1. G. Kwiecinski, 2. T. Griffiths , Mamm. Species 611, 1 (1999). [OpenUrl][31][CrossRef][32] 8. [↵][33]1. R. Cohen , Rousettus aegyptiacus, Animal Diversity Web. accessed 2 June 2020; (2011). 9. [↵][34]1. L. Stidsholt et al ., Methods Ecol. Evol. 10, 48 (2019). [OpenUrl][35] 10. [↵][36]1. S. P. Ripperger et al ., Curr. Biol. 29, 1 (2019). [OpenUrl][37][CrossRef][38] 11. [↵][39]1. H. D. J. N. Aldridge, 2. R.M. Brigham , . J. Mammal. 69, 379 (1988). [OpenUrl][40][CrossRef][41][Web of Science][42] 12. [↵][43]1. M. B. Fenton, 2. N. B. Simmons , Bats: A World of Science and Mystery (Univ. of Chicago Press, 2015). 13. [↵][44]1. K. M. Bakker et al. Nat. Ecol. Evol. 3, 1697 (2020). [OpenUrl][45] 14. [↵][46]1. M. B. Fenton et al ., Nat. Ecol. Evol. 4, 517. (2020). [OpenUrl][47] [1]: #ref-1 [2]: #ref-3 [3]: #ref-4 [4]: #ref-5 [5]: #ref-6 [6]: #ref-7 [7]: #ref-8 [8]: #ref-9 [9]: #ref-10 [10]: #ref-11 [11]: #ref-12 [12]: #ref-13 [13]: #ref-14 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DPsych.%2BRev.%26rft.volume%253D55%26rft.spage%253D189%26rft_id%253Dinfo%253Adoi%252F10.1037%252Fh0061626%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: /lookup/external-ref?access_num=10.1037/h0061626&link_type=DOI [17]: #xref-ref-3-1 "View reference 3 in text" [18]: {openurl}?query=rft.jtitle%253DNat.%2BRev.%2BNeurosci.%26rft.volume%253D16%26rft.spage%253D94%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnrn3888%26rft_id%253Dinfo%253Apmid%252F25601780%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/external-ref?access_num=10.1038/nrn3888&link_type=DOI [20]: /lookup/external-ref?access_num=25601780&link_type=MED&atom=%2Fsci%2F369%2F6500%2F142.atom [21]: #xref-ref-4-1 "View reference 4 in text" [22]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DToledo%26rft.auinit1%253DS.%26rft.volume%253D369%26rft.issue%253D6500%26rft.spage%253D188%26rft.epage%253D193%26rft.atitle%253DCognitive%2Bmap-based%2Bnavigation%2Bin%2Bwild%2Bbats%2Brevealed%2Bby%2Ba%2Bnew%2Bhigh-throughput%2Btracking%2Bsystem%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aax6904%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjkvNjUwMC8xODgiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMC8xNDIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [24]: #xref-ref-5-1 "View reference 5 in text" [25]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DHarten%26rft.auinit1%253DL.%26rft.volume%253D369%26rft.issue%253D6500%26rft.spage%253D194%26rft.epage%253D197%26rft.atitle%253DThe%2Bontogeny%2Bof%2Ba%2Bmammalian%2Bcognitive%2Bmap%2Bin%2Bthe%2Breal%2Bworld%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aay3354%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjkvNjUwMC8xOTQiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMC8xNDIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [27]: #xref-ref-6-1 "View reference 6 in text" [28]: {openurl}?query=rft.jtitle%253DProc.%2BNatl.%2BAcad.%2BSci.%2BU.S.A.%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1107365108%26rft_id%253Dinfo%253Apmid%252F21844350%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTA4LzM3L0U3MTgiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMC8xNDIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [30]: #xref-ref-7-1 "View reference 7 in text" [31]: {openurl}?query=rft.jtitle%253DMamm.%2BSpecies%26rft.volume%253D611%26rft.spage%253D1%26rft_id%253Dinfo%253Adoi%252F10.2307%252F3504411%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: /lookup/external-ref?access_num=10.2307/3504411&link_type=DOI [33]: #xref-ref-8-1 "View reference 8 in text" [34]: #xref-ref-9-1 "View reference 9 in text" [35]: {openurl}?query=rft.jtitle%253DMethods%2BEcol.%2BEvol.%26rft.volume%253D10%26rft.spage%253D48%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: #xref-ref-10-1 "View reference 10 in text" [37]: {openurl}?query=rft.jtitle%253DCurr.%2BBiol.%26rft.volume%253D29%26rft.spage%253D1%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.cub.2019.03.025%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: /lookup/external-ref?access_num=10.1016/j.cub.2019.03.025&link_type=DOI [39]: #xref-ref-11-1 "View reference 11 in text" [40]: {openurl}?query=rft.jtitle%253DJ.%2BMammal.%26rft_id%253Dinfo%253Adoi%252F10.2307%252F1381393%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [41]: /lookup/external-ref?access_num=10.2307/1381393&link_type=DOI [42]: /lookup/external-ref?access_num=A1988N554500020&link_type=ISI [43]: #xref-ref-12-1 "View reference 12 in text" [44]: #xref-ref-13-1 "View reference 13 in text" [45]: {openurl}?query=rft.jtitle%253DNat.%2BEcol.%2BEvol.%26rft.volume%253D3%26rft.spage%253D1697%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [46]: #xref-ref-14-1 "View reference 14 in text" [47]: {openurl}?query=rft.jtitle%253DNat.%2BEcol.%2BEvol.%26rft.volume%253D4%26rft.spage%253D517%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/283383
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
M. Brock Fenton. Bats navigate with cognitive maps[J]. Science,2020.
APA M. Brock Fenton.(2020).Bats navigate with cognitive maps.Science.
MLA M. Brock Fenton."Bats navigate with cognitive maps".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[M. Brock Fenton]的文章
百度学术
百度学术中相似的文章
[M. Brock Fenton]的文章
必应学术
必应学术中相似的文章
[M. Brock Fenton]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。