GSTDTAP  > 资源环境科学
DOI10.1073/pnas.2000247117
Spatial proximity moderates genotype uncertainty in genetic tagging studies
Ben C. Augustine; J. Andrew Royle; Daniel W. Linden; Angela K. Fuller
2020-07-13
发表期刊Proceedings of the National Academy of Sciences
出版年2020
英文摘要

Accelerating declines of an increasing number of animal populations worldwide necessitate methods to reliably and efficiently estimate demographic parameters such as population density and trajectory. Standard methods for estimating demographic parameters from noninvasive genetic samples are inefficient because lower-quality samples cannot be used, and they assume individuals are identified without error. We introduce the genotype spatial partial identity model (gSPIM), which integrates a genetic classification model with a spatial population model to combine both spatial and genetic information, thus reducing genotype uncertainty and increasing the precision of demographic parameter estimates. We apply this model to data from a study of fishers (Pekania pennanti) in which 37% of hair samples were originally discarded because of uncertainty in individual identity. The gSPIM density estimate using all collected samples was 25% more precise than the original density estimate, and the model identified and corrected three errors in the original individual identity assignments. A simulation study demonstrated that our model increased the accuracy and precision of density estimates 63 and 42%, respectively, using three replicated assignments (e.g., PCRs for microsatellites) per genetic sample. Further, the simulations showed that the gSPIM model parameters are identifiable with only one replicated assignment per sample and that accuracy and precision are relatively insensitive to the number of replicated assignments for high-quality samples. Current genotyping protocols devote the majority of resources to replicating and confirming high-quality samples, but when using the gSPIM, genotyping protocols could be more efficient by devoting more resources to low-quality samples.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/284302
专题资源环境科学
推荐引用方式
GB/T 7714
Ben C. Augustine,J. Andrew Royle,Daniel W. Linden,et al. Spatial proximity moderates genotype uncertainty in genetic tagging studies[J]. Proceedings of the National Academy of Sciences,2020.
APA Ben C. Augustine,J. Andrew Royle,Daniel W. Linden,&Angela K. Fuller.(2020).Spatial proximity moderates genotype uncertainty in genetic tagging studies.Proceedings of the National Academy of Sciences.
MLA Ben C. Augustine,et al."Spatial proximity moderates genotype uncertainty in genetic tagging studies".Proceedings of the National Academy of Sciences (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ben C. Augustine]的文章
[J. Andrew Royle]的文章
[Daniel W. Linden]的文章
百度学术
百度学术中相似的文章
[Ben C. Augustine]的文章
[J. Andrew Royle]的文章
[Daniel W. Linden]的文章
必应学术
必应学术中相似的文章
[Ben C. Augustine]的文章
[J. Andrew Royle]的文章
[Daniel W. Linden]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。