GSTDTAP  > 气候变化
DOI10.1126/science.abc8007
Less can be more in functional materials
Nazanin Bassiri-Gharb
2020-07-17
发表期刊Science
出版年2020
英文摘要Ferroelectric crystals have a spontaneous polarization that can be reoriented with a sufficiently strong electric field, and they are piezoelectrically active, that is, an applied stress induces dielectric polarization. The elastic and electrostatic energies needed to distort the crystal during polarization are minimized by the formation of domains with near-uniform polarization. The motion of the resulting domain walls is a major contributor to the very large piezoelectric response of ferroelectric materials ([ 1 ][1]). On page 292 of this issue, Liu et al. ([ 2 ][2]) report on the exceptional electromechanical response of ferroelectric thin films of a simple ternary oxide, NaNbO3. At low electric fields, the piezoelectric response is relatively limited and comparable to the industry-standard Pb(Zr,Ti)O3. However, at increasing electric fields and decreasing frequencies, where the contributions from domain walls' motion become substantial, the effective piezoelectric response increases by more than an order of magnitude to >8000 pm/V. In the past few decades, many advances in ferroelectrics have been achieved through materials processing, which enables precise control of structure, defects, and atomic distributions by leveraging molecular beam epitaxy and pulsed-laser deposition on single-crystalline substrates ([ 3 ][3], [ 4 ][4]). Exceptional properties result from the design of epitaxial strains, boundary conditions at the interfaces, and superb control of the materials' chemistry at the single–unit cell level. In addition, chemical modification has made great strides in translating the high piezoelectric response of complex chemistries of bulk ceramics and single crystals—including chemically modified Pb(Zr,Ti)O3, Pb(Mg1/3Nb2/3)O3-PbTiO3, (Na0.5Bi0.5)TiO3, and BaTiO3, or (K,Na)NbO3-based chemistries—to thin films ([ 5 ][5]). Both approaches attempt to manipulate the material though modification of the elastic and electrostatic energies ([ 6 ][6]). Chemical pressures created by doping, and appropriate choice of substrates and electrodes, can modify local or global strain states ([ 7 ][7]). Similarly, charge manipulation can be implemented through some combination of creating internal interfaces (for example, within superlattices) ([ 8 ][8]), external interfaces (bilayers of polar and nonpolar materials) ([ 9 ][9]), or defect sites ([ 10 ][10]). Changes in the electrostatic or strain energies not only can result in changes in the overall domain configuration but also can modify the actual crystallographic structure ([ 11 ][11], [ 12 ][12]). ![Figure][13] Self-assembling a piezoelectric Piezoelectrics deform in response to an applied electric field. Liu et al. show that self-assembly of nanopillar structures in sodium niobate (NaNbO3) leads to a strong piezoelectric effect at high electric fields. GRAPHIC: C. BICKEL/ SCIENCE Liu et al. leverage all of these approaches in a simple yet highly effective self-assembly method. Sodium deficiency with respect to the stoichiometric and ferroelectrically active NaNbO3 creates extended nanopillar defects within a perovskite-based matrix. Within the nanopillar regions, both Nb and Na atoms, which occupy the B and A perovskite lattice sites, respectively, can occupy antisite positions (see the figure, top). Additionally, the boundaries between the nanopillar regions and the matrix are characterized by edge-shared oxygen octahedra instead of corner-shared octahedra of the perovskite matrix. The local strain fields associated with the nanopillars, possibly in addition to the uncompensated local charges, modify the ferroelectric polarization directions inside the material. Within the stoichiometric NaNbO3 matrix, the spontaneous polarization directions can be oriented along any of the principal axes of a prototypical perovskite cell (a tetragonal distortion). Conversely, the strain-modified material in proximity to the nanopillars adopts a monoclinic distortion, where the polarization direction lies within a face or body-diagonal plane. The coexistence of monoclinic and tetragonal domains implies that the two distortions have similar energy levels. Hence, under an applied electric field, the polarization can rotate along multiple polarization directions belonging to either tetragonal or monoclinic distortions (see the figure, bottom). Such polarization rotations are often accompanied by a large enhancement of the piezoelectric response through mechanisms well understood in relaxor-ferroelectric compositions. Liu et al. 's material offers practical advantages, in that the films are processed with a low-cost physical vapor deposition. Also, the chemical composition has limited environmental impact. High–piezoelectric-response materials containing Pb, Bi, or both have associated health and environmental concerns, whereas Na, Nb, and O are benign environmentally and nonhazardous to humans ([ 3 ][3]). Finally, the nanopillars are formed through self-assembly in the material, rather than induced by exotic dopants or precisely controlled chemistries. During processing, the higher volatility of Na compared with Nb results in its stoichiometry deficiency ([ 13 ][14]) and ultimately creates Nb antisite occupancy that is critical to local structural modification. Such antisite cation occupancy has previously been reported in other ferroics and can substantially modify functionality. For example, Pb occupancy of Zr sites in PbZrO3 thin films can induce ferroelectricity even at zero external fields, ([ 14 ][15]) in a material known as the prototypical antiferroelectric (one with antiparallel orientation of dielectric dipoles and zero net polarization at low electric fields). Liu et al. 's approach for obtaining higher piezoelectric properties in simpler oxides through A-site cation deficiency could be explored with other ternary oxides. Both cation deficiency and size confinement are successful strategies for stabilizing ferroelectricity in otherwise paraelectric SrTiO3 ([ 15 ][16]), and similar large piezoelectric enhancements might be obtained in thinner NaNbO3 films, with coexisting tetragonal-monoclinic ferroelectric distortions. Ferroelectric thin films are useful for piezoelectrically actuated micro- and nanoelectromechanical systems, so it will be interesting to determine the minimum lateral size where the piezoelectric properties of the film are not affected by sample heterogeneity. Overall, neither perfection nor complexity was key to creating a material with an exceptional response, so in this case, less is indeed more. 1. [↵][17]1. N. Bassiri-Gharb et al ., J. Electroceram. 19, 49 (2007). [OpenUrl][18] 2. [↵][19]1. H. Liu et al ., Science 369, 292 (2020). [OpenUrl][20][Abstract/FREE Full Text][21] 3. [↵][22]1. J. A. Mundy et al ., Nature 537, 523 (2016). [OpenUrl][23] 4. [↵][24]1. Q. Zhang et al ., Adv. Mater. 29, 1702375 (2017). [OpenUrl][25] 5. [↵][26]1. S. Trolier-McKinstry, 2. S. Zhang, 3. A. J. Bell, 4. X. Tan , Annu. Rev. Mater. Res. 48, 191 (2018). [OpenUrl][27] 6. [↵][28]1. N. Domingo et al ., Nanoscale 11, 17920 (2019). [OpenUrl][29] 7. [↵][30]1. D. G. Schlom et al ., Annu. Rev. Mater. Res. 37, 589 (2007). [OpenUrl][31][CrossRef][32] 8. [↵][33]1. E. Bousquet et al ., Nature 452, 732 (2008). [OpenUrl][34][CrossRef][35][PubMed][36][Web of Science][37] 9. [↵][38]1. Y. Zhang et al ., Nat. Nanotechnol. 13, 1132 (2018). [OpenUrl][39] 10. [↵][40]1. S. Das et al ., Nature 568, 368 (2019). [OpenUrl][41] 11. [↵][42]1. X. Liu et al ., Science 364, 264 (2019). [OpenUrl][43][Abstract/FREE Full Text][44] 12. [↵][45]1. Y. Wei et al ., Nat. Mater. 17, 1095 (2018). [OpenUrl][46] 13. [↵][47]1. N. Bassiri-Gharb, 2. Y. Bastani, 3. A. Bernal , Chem. Soc. Rev. 43, 2125 (2014). [OpenUrl][48] 14. [↵][49]1. R. Gao et al ., Chem. Mater. 29, 6544 (2017). [OpenUrl][50] 15. [↵][51]1. D. Lee et al ., Science 349, 1314 (2015). [OpenUrl][52][Abstract/FREE Full Text][53] Acknowledgments: The author acknowledges funding from the U.S. National Science Foundation under grant no. DMR-1255379, the Defense Threat Reduction Agency (DTRA) through grant no. HDTRA1-15-0035, and the Harris Saunders Jr. Chair at Georgia Tech. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: pending:yes [14]: #ref-13 [15]: #ref-14 [16]: #ref-15 [17]: #xref-ref-1-1 "View reference 1 in text" [18]: {openurl}?query=rft.jtitle%253DJ.%2BElectroceram.%26rft.volume%253D19%26rft.spage%253D49%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: #xref-ref-2-1 "View reference 2 in text" [20]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLiu%26rft.auinit1%253DH.%26rft.volume%253D369%26rft.issue%253D6501%26rft.spage%253D292%26rft.epage%253D297%26rft.atitle%253DGiant%2Bpiezoelectricity%2Bin%2Boxide%2Bthin%2Bfilms%2Bwith%2Bnanopillar%2Bstructure%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abb3209%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjkvNjUwMS8yOTIiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMS8yNTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [22]: #xref-ref-3-1 "View reference 3 in text" [23]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D537%26rft.spage%253D523%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: #xref-ref-4-1 "View reference 4 in text" [25]: {openurl}?query=rft.jtitle%253DAdv.%2BMater.%26rft.volume%253D29%26rft.spage%253D1702375%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: #xref-ref-5-1 "View reference 5 in text" [27]: {openurl}?query=rft.jtitle%253DAnnu.%2BRev.%2BMater.%2BRes.%26rft.volume%253D48%26rft.spage%253D191%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [28]: #xref-ref-6-1 "View reference 6 in text" [29]: {openurl}?query=rft.jtitle%253DNanoscale%26rft.volume%253D11%26rft.spage%253D17920%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: #xref-ref-7-1 "View reference 7 in text" [31]: {openurl}?query=rft.jtitle%253DAnnu.%2BRev.%2BMater.%2BRes.%26rft.volume%253D37%26rft.spage%253D589%26rft.atitle%253DANNU%2BREV%2BMATER%2BRES%26rft_id%253Dinfo%253Adoi%252F10.1146%252Fannurev.matsci.37.061206.113016%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: /lookup/external-ref?access_num=10.1146/annurev.matsci.37.061206.113016&link_type=DOI [33]: #xref-ref-8-1 "View reference 8 in text" [34]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DBousquet%26rft.auinit1%253DE.%26rft.volume%253D452%26rft.issue%253D7188%26rft.spage%253D732%26rft.epage%253D736%26rft.atitle%253DImproper%2Bferroelectricity%2Bin%2Bperovskite%2Boxide%2Bartificial%2Bsuperlattices.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature06817%26rft_id%253Dinfo%253Apmid%252F18401406%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: /lookup/external-ref?access_num=10.1038/nature06817&link_type=DOI [36]: /lookup/external-ref?access_num=18401406&link_type=MED&atom=%2Fsci%2F369%2F6501%2F252.atom [37]: /lookup/external-ref?access_num=000254792500041&link_type=ISI [38]: #xref-ref-9-1 "View reference 9 in text" [39]: {openurl}?query=rft.jtitle%253DNat.%2BNanotechnol.%26rft.volume%253D13%26rft.spage%253D1132%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: #xref-ref-10-1 "View reference 10 in text" [41]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D568%26rft.spage%253D368%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [42]: #xref-ref-11-1 "View reference 11 in text" [43]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLi%26rft.auinit1%253DF.%26rft.volume%253D364%26rft.issue%253D6437%26rft.spage%253D264%26rft.epage%253D268%26rft.atitle%253DGiant%2Bpiezoelectricity%2Bof%2BSm-doped%2BPb%2528Mg1%252F3Nb2%252F3%2529O3-PbTiO3%2Bsingle%2Bcrystals%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaw2781%26rft_id%253Dinfo%253Apmid%252F31000659%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjQvNjQzNy8yNjQiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMS8yNTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [45]: #xref-ref-12-1 "View reference 12 in text" [46]: {openurl}?query=rft.jtitle%253DNat.%2BMater.%26rft.volume%253D17%26rft.spage%253D1095%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [47]: #xref-ref-13-1 "View reference 13 in text" [48]: {openurl}?query=rft.jtitle%253DChem.%2BSoc.%2BRev.%26rft.volume%253D43%26rft.spage%253D2125%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [49]: #xref-ref-14-1 "View reference 14 in text" [50]: {openurl}?query=rft.jtitle%253DChem.%2BMater.%26rft.volume%253D29%26rft.spage%253D6544%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [51]: #xref-ref-15-1 "View reference 15 in text" [52]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLee%26rft.auinit1%253DD.%26rft.volume%253D349%26rft.issue%253D6254%26rft.spage%253D1314%26rft.epage%253D1317%26rft.atitle%253DEmergence%2Bof%2Broom-temperature%2Bferroelectricity%2Bat%2Breduced%2Bdimensions%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaa6442%26rft_id%253Dinfo%253Apmid%252F26383947%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [53]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNDkvNjI1NC8xMzE0IjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzY5LzY1MDEvMjUyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/284337
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Nazanin Bassiri-Gharb. Less can be more in functional materials[J]. Science,2020.
APA Nazanin Bassiri-Gharb.(2020).Less can be more in functional materials.Science.
MLA Nazanin Bassiri-Gharb."Less can be more in functional materials".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nazanin Bassiri-Gharb]的文章
百度学术
百度学术中相似的文章
[Nazanin Bassiri-Gharb]的文章
必应学术
必应学术中相似的文章
[Nazanin Bassiri-Gharb]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。