Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2018GL079282 |
An Artificial Neural Network for Inferring Solar Wind Proxies at Mars | |
Ruhunusiri, Suranga1; Halekas, J. S.1; Espley, J. R.2; Eparvier, F.3; Brain, D.3; Mazelle, C.4; Harada, Y.5; DiBraccio, G. A.2; Dong, Y.3; Ma, Y.6; Thiemann, E. M. B.3; Mitchell, D. L.7; Jakosky, B. M.3 | |
2018-10-28 | |
发表期刊 | GEOPHYSICAL RESEARCH LETTERS
![]() |
ISSN | 0094-8276 |
EISSN | 1944-8007 |
出版年 | 2018 |
卷号 | 45期号:20页码:10855-10865 |
文章类型 | Article |
语种 | 英语 |
国家 | USA; France; Japan |
英文摘要 | We present a novel method to determine solar wind proxies from sheath measurements at Mars. Specifically, we develop an artificial neural network (ANN) to simultaneously infer seven solar wind proxies: ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude and its vector components, using spacecraft measurements of ion moments, magnetic field magnitude, magnetic field components in the sheath, and the solar extreme ultraviolet flux. The ANN was trained and tested using 3 years of data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. When compared with MAVEN spacecraft's in situ measured values of the solar wind parameters, we find that the ANN proxies for the solar wind ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude have percentage differences of 50% or less for 84.4%, 99.9%, 86.8%, and 79.8% of the instances, respectively. For the cone angle and clock angle proxies, 69.1% and 53.3% of instances, respectively, have angle differences of 30 degrees or less. |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000451510500008 |
WOS关键词 | GLOBAL-SURVEYOR DATA ; ION ESCAPE ; MAVEN ; PLASMA ; VARIABILITY ; FIELD ; WAVES ; PLUME ; SHOCK ; TIME |
WOS类目 | Geosciences, Multidisciplinary |
WOS研究方向 | Geology |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/28482 |
专题 | 气候变化 |
作者单位 | 1.Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA; 2.NASA, Goddard Space Flight Ctr, Greenbelt, MD USA; 3.Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA; 4.Univ Toulouse, UPS, CNES, IRAP,CNRS, Toulouse, France; 5.Kyoto Univ, Dept Geophys, Kyoto, Japan; 6.Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA; 7.Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA |
推荐引用方式 GB/T 7714 | Ruhunusiri, Suranga,Halekas, J. S.,Espley, J. R.,et al. An Artificial Neural Network for Inferring Solar Wind Proxies at Mars[J]. GEOPHYSICAL RESEARCH LETTERS,2018,45(20):10855-10865. |
APA | Ruhunusiri, Suranga.,Halekas, J. S..,Espley, J. R..,Eparvier, F..,Brain, D..,...&Jakosky, B. M..(2018).An Artificial Neural Network for Inferring Solar Wind Proxies at Mars.GEOPHYSICAL RESEARCH LETTERS,45(20),10855-10865. |
MLA | Ruhunusiri, Suranga,et al."An Artificial Neural Network for Inferring Solar Wind Proxies at Mars".GEOPHYSICAL RESEARCH LETTERS 45.20(2018):10855-10865. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论