GSTDTAP  > 气候变化
DOI10.1029/2018GL079282
An Artificial Neural Network for Inferring Solar Wind Proxies at Mars
Ruhunusiri, Suranga1; Halekas, J. S.1; Espley, J. R.2; Eparvier, F.3; Brain, D.3; Mazelle, C.4; Harada, Y.5; DiBraccio, G. A.2; Dong, Y.3; Ma, Y.6; Thiemann, E. M. B.3; Mitchell, D. L.7; Jakosky, B. M.3
2018-10-28
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2018
卷号45期号:20页码:10855-10865
文章类型Article
语种英语
国家USA; France; Japan
英文摘要

We present a novel method to determine solar wind proxies from sheath measurements at Mars. Specifically, we develop an artificial neural network (ANN) to simultaneously infer seven solar wind proxies: ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude and its vector components, using spacecraft measurements of ion moments, magnetic field magnitude, magnetic field components in the sheath, and the solar extreme ultraviolet flux. The ANN was trained and tested using 3 years of data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. When compared with MAVEN spacecraft's in situ measured values of the solar wind parameters, we find that the ANN proxies for the solar wind ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude have percentage differences of 50% or less for 84.4%, 99.9%, 86.8%, and 79.8% of the instances, respectively. For the cone angle and clock angle proxies, 69.1% and 53.3% of instances, respectively, have angle differences of 30 degrees or less.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000451510500008
WOS关键词GLOBAL-SURVEYOR DATA ; ION ESCAPE ; MAVEN ; PLASMA ; VARIABILITY ; FIELD ; WAVES ; PLUME ; SHOCK ; TIME
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/28482
专题气候变化
作者单位1.Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA;
2.NASA, Goddard Space Flight Ctr, Greenbelt, MD USA;
3.Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA;
4.Univ Toulouse, UPS, CNES, IRAP,CNRS, Toulouse, France;
5.Kyoto Univ, Dept Geophys, Kyoto, Japan;
6.Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA;
7.Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
推荐引用方式
GB/T 7714
Ruhunusiri, Suranga,Halekas, J. S.,Espley, J. R.,et al. An Artificial Neural Network for Inferring Solar Wind Proxies at Mars[J]. GEOPHYSICAL RESEARCH LETTERS,2018,45(20):10855-10865.
APA Ruhunusiri, Suranga.,Halekas, J. S..,Espley, J. R..,Eparvier, F..,Brain, D..,...&Jakosky, B. M..(2018).An Artificial Neural Network for Inferring Solar Wind Proxies at Mars.GEOPHYSICAL RESEARCH LETTERS,45(20),10855-10865.
MLA Ruhunusiri, Suranga,et al."An Artificial Neural Network for Inferring Solar Wind Proxies at Mars".GEOPHYSICAL RESEARCH LETTERS 45.20(2018):10855-10865.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ruhunusiri, Suranga]的文章
[Halekas, J. S.]的文章
[Espley, J. R.]的文章
百度学术
百度学术中相似的文章
[Ruhunusiri, Suranga]的文章
[Halekas, J. S.]的文章
[Espley, J. R.]的文章
必应学术
必应学术中相似的文章
[Ruhunusiri, Suranga]的文章
[Halekas, J. S.]的文章
[Espley, J. R.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。