GSTDTAP  > 气候变化
DOI10.1029/2020GL088950
Machine learning for source identification of dust on the Chinese Loess Plateau
Xin Lin; Hong Chang; Kaibo Wang; Guishan Zhang; Ganggang Meng
2020-08-06
发表期刊Geophysical Research Letters
出版年2020
英文摘要

The provenance of voluminous aeolian dust on the Chinese Loess Plateau (CLP) is still highly debated. Here we apply machine learning methods of support vector machine and convolutional neural network to train models using element compositions of surface sediments from eight potential source regions, accordingly, to determine the dust sources and contributions by classifying the last glacial loess and present interglacial sediments on the CLP. The trained models succeed in differentiating major secondary sources and quantitatively estimating the contributions of both primary and secondary sources at least during the last glacial ‐ interglacial cycle. The understanding that a constant dust source despite changing climate conditions agrees with those derived from Sr‐Nd isotopes and U‐Pb age spectra. Our observations demonstrate that big geochemical data sets coupled with machine learning technology is fully capable of tracing sources.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/287677
专题气候变化
推荐引用方式
GB/T 7714
Xin Lin,Hong Chang,Kaibo Wang,et al. Machine learning for source identification of dust on the Chinese Loess Plateau[J]. Geophysical Research Letters,2020.
APA Xin Lin,Hong Chang,Kaibo Wang,Guishan Zhang,&Ganggang Meng.(2020).Machine learning for source identification of dust on the Chinese Loess Plateau.Geophysical Research Letters.
MLA Xin Lin,et al."Machine learning for source identification of dust on the Chinese Loess Plateau".Geophysical Research Letters (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xin Lin]的文章
[Hong Chang]的文章
[Kaibo Wang]的文章
百度学术
百度学术中相似的文章
[Xin Lin]的文章
[Hong Chang]的文章
[Kaibo Wang]的文章
必应学术
必应学术中相似的文章
[Xin Lin]的文章
[Hong Chang]的文章
[Kaibo Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。