Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1088/1748-9326/ab89d6 |
Estimation of global coastal sea level extremes using neural networks | |
Bruneau, Nicolas1,2; Polton, Jeff1; Williams, Joanne1; Holt, Jason1 | |
2020-07-01 | |
发表期刊 | ENVIRONMENTAL RESEARCH LETTERS
![]() |
ISSN | 1748-9326 |
出版年 | 2020 |
卷号 | 15期号:7 |
文章类型 | Article |
语种 | 英语 |
国家 | England |
英文摘要 | Accurately predicting total sea-level including tides and storm surges is key to protecting and managing our coastal environment. However, dynamically forecasting sea level extremes is computationally expensive. Here a novel alternative based on ensembles of artificial neural networks independently trained at over 600 tide gauges around the world, is used to predict the total sea-level based on tidal harmonics and atmospheric conditions at each site. The results show globally-consistent high skill of the neural networks (NNs) to capture the sea variability at gauges around the globe. While the main atmosphere-driven dynamics can be captured with multivariate linear regressions, atmospheric-driven intensification, tide-surge and tide-tide non-linearities in complex coastal environments are only predicted with the NNs. In addition, the non-linear NN approach provides a simple and consistent framework to assess the uncertainty through a probabilistic forecast. These new and cheap methods are relatively easy to setup and could be a valuable tool combined with more expensive dynamical model in order to improve local resilience. |
英文关键词 | sea water anomaly extremes storm surges GESLA database machine learning |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000549264300001 |
WOS关键词 | STORM-SURGE ; PREDICTION ; XYNTHIA ; MODELS ; EAST ; BAY |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/289391 |
专题 | 气候变化 |
作者单位 | 1.Natl Oceanog Ctr, Joseph Proudman Bldg, Liverpool L3 5DA, Merseyside, England; 2.Reask UK Ltd, 49 Greek St, London W1D 4EG, England |
推荐引用方式 GB/T 7714 | Bruneau, Nicolas,Polton, Jeff,Williams, Joanne,et al. Estimation of global coastal sea level extremes using neural networks[J]. ENVIRONMENTAL RESEARCH LETTERS,2020,15(7). |
APA | Bruneau, Nicolas,Polton, Jeff,Williams, Joanne,&Holt, Jason.(2020).Estimation of global coastal sea level extremes using neural networks.ENVIRONMENTAL RESEARCH LETTERS,15(7). |
MLA | Bruneau, Nicolas,et al."Estimation of global coastal sea level extremes using neural networks".ENVIRONMENTAL RESEARCH LETTERS 15.7(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论