GSTDTAP  > 气候变化
DOI10.1029/2019JD032146
Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations
Coopman, Q.1; Hoose, C.1; Stengel, M.2
2020-06-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2020
卷号125期号:11
文章类型Article
语种英语
国家Germany
英文摘要

Clouds are liquid at temperature greater than 0 degrees C and ice at temperature below -38 degrees C. Between these two thresholds, the temperature of the cloud thermodynamic phase transition from liquid to ice is difficult to predict and the theory and numerical models do not agree: Microphysical, dynamical, and meteorological parameters influence the glaciation temperature. We temporally track optical and microphysical properties of 796 clouds over Europe from 2004 to 2015 with the space-based instrument Spinning Enhanced Visible and Infrared Imager on board the geostationary METEOSAT second generation satellites. We define the glaciation temperature as the mean between the cloud top temperature of those consecutive images for which a thermodynamic phase change in at least one pixel is observed for a given cloud object. We find that, on average, isolated convective clouds over Europe freeze at -21.6 degrees C. Furthermore, we analyze the temporal evolution of a set of cloud properties and we retrieve glaciation temperatures binned by meteorological and microphysical regimes: For example, the glaciation temperature increases up to 11 degrees C when cloud droplets are large, in line with previous studies. Moreover, the correlations between the parameters characterizing the glaciation temperature are compared and analyzed and a statistical study based on principal component analysis shows that after the cloud top height, the cloud droplet size is the most important parameter to determine the glaciation temperature.


Plain Language Summary It is difficult to quantify the temperature at which clouds transition from liquid to ice. Indeed, between -38 degrees C and 0 degrees C, clouds can be composed of liquid cloud droplets, ice crystals, or mixture of both, but the theory cannot predict the observations. Satellites usually give a snapshot of microphysical properties of clouds at one time step during their lifetime. Therefore, statistical tools are needed to infer how clouds behave during their life cycle from a composite of several clouds. Here, we temporally track the properties of 796 convective clouds over Europe from a tracking algorithm based on the geostationary satellite SEVIRI. We are able to study the same clouds from their initiation to their dissipation including their transition from liquid to ice with a temporal resolution of 15 min. We find that, on average, clouds freeze at -21.6 degrees C and that the size of cloud droplets has a large impact on the temperature of glaciation: The larger the cloud droplets, the higher the temperature of glaciation. Our results aim to better understand how clouds transition from liquid to ice, and they can improve predictions of the impact of clouds in future climate.


英文关键词Clouds Glaciation temperature geostationary satellite SEVIRI Thermodynamic phase
领域气候变化
收录类别SCI-E
WOS记录号WOS:000541156800002
WOS关键词RADIATIVE-TRANSFER MODEL ; INITIATION ; ASSIMILATION ; CUMULUS ; ICE ; VARIABILITY ; EVOLUTION ; EUROPE ; GROWTH ; ONSET
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/289457
专题气候变化
作者单位1.Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany;
2.Deutsch Wetterdienst DWD, Offenbach, Germany
推荐引用方式
GB/T 7714
Coopman, Q.,Hoose, C.,Stengel, M.. Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2020,125(11).
APA Coopman, Q.,Hoose, C.,&Stengel, M..(2020).Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,125(11).
MLA Coopman, Q.,et al."Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 125.11(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Coopman, Q.]的文章
[Hoose, C.]的文章
[Stengel, M.]的文章
百度学术
百度学术中相似的文章
[Coopman, Q.]的文章
[Hoose, C.]的文章
[Stengel, M.]的文章
必应学术
必应学术中相似的文章
[Coopman, Q.]的文章
[Hoose, C.]的文章
[Stengel, M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。