GSTDTAP  > 资源环境科学
DOI10.1029/2020WR027572
Process‐level evaluation of a hyper‐resolution forest snow model using distributed multi‐sensor observations
Giulia Mazzotti; Richard Essery; Clare Webster; Johanna Malle; Tobias Jonas
2020-08-17
发表期刊Water Resources Research
出版年2020
英文摘要

The complex dynamics of snow accumulation and melt processes under forest canopies entail major observational and modelling challenges, as they vary strongly in space and time. In this study, we present novel datasets acquired with mobile multi‐sensor platforms in sub‐alpine and boreal forest stands. These datasets include spatially and temporally resolved measurements of short‐ and longwave irradiance, air and snow surface temperatures, wind speed, and snow depth, all co‐registered to canopy structure information. We then apply the energy balance snow model FSM2 to obtain concurrent, distributed simulations of the forest snowpack at very high (‘hyper’) resolution (2 m). Our datasets allow us to assess the performance of alternative canopy representation strategies within FSM2 at the level of individual snow energy balance components and in a spatially explicit manner. We demonstrate the benefit of accounting for detailed spatial patterns of short‐ and longwave radiation transfer through the canopy, and show the importance of describing wind attenuation by the canopy using stand‐scale metrics. With the proposed canopy representation, snowmelt dynamics in discontinuous forest stands were successfully reproduced. Hyper‐resolution simulations resolving these effects provide an optimal basis for assessing the snow‐hydrological impacts of forest disturbances, and for validating and improving the representation of forest snow processes in land surface models intended for coarser‐scale applications.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/291108
专题资源环境科学
推荐引用方式
GB/T 7714
Giulia Mazzotti,Richard Essery,Clare Webster,等. Process‐level evaluation of a hyper‐resolution forest snow model using distributed multi‐sensor observations[J]. Water Resources Research,2020.
APA Giulia Mazzotti,Richard Essery,Clare Webster,Johanna Malle,&Tobias Jonas.(2020).Process‐level evaluation of a hyper‐resolution forest snow model using distributed multi‐sensor observations.Water Resources Research.
MLA Giulia Mazzotti,et al."Process‐level evaluation of a hyper‐resolution forest snow model using distributed multi‐sensor observations".Water Resources Research (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Giulia Mazzotti]的文章
[Richard Essery]的文章
[Clare Webster]的文章
百度学术
百度学术中相似的文章
[Giulia Mazzotti]的文章
[Richard Essery]的文章
[Clare Webster]的文章
必应学术
必应学术中相似的文章
[Giulia Mazzotti]的文章
[Richard Essery]的文章
[Clare Webster]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。