GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2020.105246
Lightning data assimilation in the WRF-ARW model for short-term rainfall forecasts of three severe storm cases in Italy
Albert Comellas Prat, Stefano Federico, Rosa Claudia Torcasio, Alex O. Fierro, Stefano Dietrich
2020-09-06
发表期刊Atmospheric Research
出版年2020
英文摘要

This study analyses the impact of total lightning data assimilation on cloud-resolving short-term (3 and 6 h) precipitation forecasts of three heavy rainfall events that occurred recently in Italy by providing an evaluation of forecast skill using statistical scores for 3-hourly thresholds against observational data from a dense rain gauge network. The experiments are performed with two initial and boundary conditions datasets as a sensitivity test. The three rainfall events have been chosen to better represent the convective regime spectrum: from a short-lived and localised thunderstorm to a long-lived and widespread event, along with a case that had elements of both.

This analysis illustrates the ability of the lightning data assimilation (LDA) to notably improve the short-term rainfall forecasts with respect to control simulations without LDA. The assimilation of lightning enhances the representation of convection in the model and translates into a better spatiotemporal positioning of the storm systems. The results of the statistical scores reveal that simulations with LDA always improve the probability of detection, particularly for rainfall thresholds exceeding 40 mm/3 h. The false alarm ratio also improves but appears to be more sensitive to the model initial and boundary conditions. Overall, these results show a systematic advantage of the LDA with a 3-h forecast range over 6-h.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/292977
专题地球科学
推荐引用方式
GB/T 7714
Albert Comellas Prat, Stefano Federico, Rosa Claudia Torcasio, Alex O. Fierro, Stefano Dietrich. Lightning data assimilation in the WRF-ARW model for short-term rainfall forecasts of three severe storm cases in Italy[J]. Atmospheric Research,2020.
APA Albert Comellas Prat, Stefano Federico, Rosa Claudia Torcasio, Alex O. Fierro, Stefano Dietrich.(2020).Lightning data assimilation in the WRF-ARW model for short-term rainfall forecasts of three severe storm cases in Italy.Atmospheric Research.
MLA Albert Comellas Prat, Stefano Federico, Rosa Claudia Torcasio, Alex O. Fierro, Stefano Dietrich."Lightning data assimilation in the WRF-ARW model for short-term rainfall forecasts of three severe storm cases in Italy".Atmospheric Research (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Albert Comellas Prat, Stefano Federico, Rosa Claudia Torcasio, Alex O. Fierro, Stefano Dietrich]的文章
百度学术
百度学术中相似的文章
[Albert Comellas Prat, Stefano Federico, Rosa Claudia Torcasio, Alex O. Fierro, Stefano Dietrich]的文章
必应学术
必应学术中相似的文章
[Albert Comellas Prat, Stefano Federico, Rosa Claudia Torcasio, Alex O. Fierro, Stefano Dietrich]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。