Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1126/science.abd8358 |
Quiet Anthropocene, quiet Earth | |
Marine A. Denolle; Tarje Nissen-Meyer | |
2020-09-11 | |
发表期刊 | Science
![]() |
出版年 | 2020 |
英文摘要 | Our planet vibrates incessantly, sometimes with notable but more often with imperceptible intensity. Conventional seismology attempts to decipher vibrational sources and path effects by studying seismograms—records of vibrations measured with seismometers. In doing so, scientists seek either to understand the tectonic processes that lead to strong ground motions and earthquake failure ([ 1 ][1]) or to probe otherwise inaccessible planetary interiors ([ 2 ][2]). Progress in these areas of research typically has relied on the rare and geographically irregular occurrence of large earthquakes. However, anthropogenic (human) activities at Earth's surface also generate seismic waves that instruments can detect over great distances. On page 1338 of this issue, Lecocq et al. ([ 3 ][3]) report on a quieting of anthropogenic vibrations since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Seismology has benefited from a surge in seismic data volume, computational power, and corresponding methodological development. These advances have enabled seismologists to branch away from traditional source and subsurface characterization of the energy from earthquakes and human-made blasts. The expansion of seismic networks has allowed the observation of previously unseen natural processes as diverse as wildlife activity ([ 4 ][4]), bed load transport in rivers, glacier sliding ([ 5 ][5]), and surface-mass wasting ([ 6 ][6]). In particular, scientists use continuous, ambient seismic vibrations to probe volcanic activities ([ 7 ][7]) and groundwater resources ([ 8 ][8]), to track storms ([ 9 ][9]), and to decipher ice sheet processes ([ 10 ][10]). Human cultural noise carries seismic signatures mostly at frequencies above 1 Hz, whether the source is transient (entertainment; individual cars, trains, or planes), harmonic (wind turbines, machinery), or diffuse (railroads, highways) ([ 11 ][11], [ 12 ][12]) (see the figure). Overall, anthropogenic seismic noise levels have increased over the past few decades, and there is a clear positive correlation between this increase and gross domestic product ([ 13 ][13]). But when the SARS-CoV-2 pandemic began to ravage the planet, humans—and Earth—went quiet. Through a global analysis of seismic noise levels, Lecocq et al. found that most sites experienced a drastic reduction in noise levels in the 4- to 14-Hz frequency band. This reduction was much greater than those observed during the annual noise-level cycles of national or religious holidays. Daily CO2 emissions fell only 11 to 25% ([ 14 ][14]), whereas anthropogenic vibrations dropped by 75% in most countries that imposed lockdown measures. Among countries with the greatest noise reductions were China, Italy, and France—all densely populated places with strong government responses (that is, with high virus-containment indices) ([ 15 ][15]). Lecocq et al. also detected a correlation between seismic data and new types of time series, such as urban audible sound from acoustics data and cell phone mobility data. The authors observed the greatest correlations between seismic noise levels and two common types of pandemic mitigation: surface transportation and nonessential business activities. Lecocq et al. did not detect a strong correlation between lockdown and seismic noise reduction at other frequency bands, which might be explained by certain uninterrupted human activities such as power generation ([ 14 ][14]). For all its hardships, the lockdown has unlocked a door to scientific inquiry into environmental noise and global collaboration. At a fundamental level, low noise benefits traditional seismology, hence the recent noise decrease might open new windows of opportunity; study areas hindered by urban noise might now be targets for detecting microseismicity or for improved subsurface imaging. The crucial next step, as ever in seismology, is to determine the causative nature of these signals beyond their correlation—thus turning anthropogenic noise into informative signals that allow scientists to address new questions. For example: Is there feedback between anthropogenic vibrations and Earth processes? And will seismic monitoring of anthropogenic and environmental activities become complementary, economically valuable alternatives to conventional techniques? To achieve these advances, seismologists must develop new ways of processing data and modeling and interpreting results. Lecocq et al. exemplify seismological progress through best practices in scientific research: public data, open-access software and hardware, global cooperation, and crowdsourcing of citizen-science projects. All of the data are publicly available through open-access data centers at the Incorporated Research Institutions for Seismology (IRIS), which hosts and redistributes real-time seismograms from most of the stations participating in the Federation of Digital Seismograph Networks archive. A large proportion of the data used in the Lecocq et al. study was measured on seismic instruments that are powered on open-source Raspberry Pi computers hosted by citizen scientists. The Raspberry Shake network counts more than 3500 stations globally, all installed in homes, schools, and research institutions at 2 to 7% of the cost of conventional research or industrial sensors. The authors performed data analyses with open-source Python software Obspy, demonstrating the prevalence and usefulness of open-source community codes in modern science. Like the pandemic, the seismological community also is shaking up norms. One important example is the reorganization of research activities. Although physical borders are closed, Lecocq et al. demonstrate that, much like the global medical research on SARS-CoV-2, seismological research is and ought to be without borders. The new study represents scientists from 25 countries on five continents, and the authors shared the manuscript on public editing platforms (Google Docs, Slack) that allowed for all members of the community to contribute. Indeed, social seismology, which directly relates human activities and seismic waves, has sparked enthusiasm in the scientific community for urban seismology. The fall meeting of the American Geophysical Union (December 2020) will highlight the imminent wave of SARS-CoV-2–related seismological science in a special session called “Social Seismology.” ![Figure][16] Humans and nature excite seismic waves Seismometers record vibrations from everything, not only earthquakes. Shown are sources that induce seismic waves of different vibration modes (harmonic, diffuse, transient), detectable over large distances. GRAPHIC: N. DESAI/ SCIENCE 1. [↵][17]1. M. A. Denolle, 2. E. M. Dunham, 3. G. A. Prieto, 4. G. C. Beroza , Science 343, 399 (2014). [OpenUrl][18][Abstract/FREE Full Text][19] 2. [↵][20]1. K. Hosseini et al ., Geophys. J. Int. 220, 96 (2020). [OpenUrl][21] 3. [↵][22]1. T. Lecocq et al ., Science 369, 1338 (2020). [OpenUrl][23][Abstract/FREE Full Text][24] 4. [↵][25]1. B. Mortimer, 2. W. L. Rees, 3. P. Koelemeijer, 4. T. Nissen-Meyer , Curr. Biol. 28, R547 (2018). [OpenUrl][26][CrossRef][27] 5. [↵][28]1. E. A. Podolskiy, 2. F. Walter , Rev. Geophys. 54, 708 (2016). [OpenUrl][29] 6. [↵][30]1. G. Ekström, 2. C. P. Stark , Science 339, 1416 (2013). [OpenUrl][31][Abstract/FREE Full Text][32] 7. [↵][33]1. G. Olivier, 2. F. Brenguier, 3. R. Carey, 4. P. Okubo, 5. C. Donaldson , Geophys. Res. Lett. 46, 3734 (2019). [OpenUrl][34] 8. [↵][35]1. T. Clements, 2. M. A. Denolle , Geophys. Res. Lett. 45, 6459 (2018). [OpenUrl][36] 9. [↵][37]1. L. Gualtieri, 2. S. J. Camargo, 3. S. Pascale, 4. F. M. E. Pons, 5. G. Ekström , Earth Planet. Sci. Lett. 484, 287 (2018). [OpenUrl][38] 10. [↵][39]1. A. Mordret, 2. T. D. Mikesell, 3. C. Harig, 4. B. P. Lipovsky, 5. G. A. Prieto , Sci. Adv. 2, e1501538 (2016). [OpenUrl][40][FREE Full Text][41] 11. [↵][42]1. J. Díaz, 2. M. Ruiz, 3. P. S. Sánchez-Pastor, 4. P. Romero , Sci. Rep. 7, 15296 (2017). [OpenUrl][43][CrossRef][44][PubMed][45] 12. [↵][46]1. S. Schippkus, 2. M. Garden, 3. G. Bokelmann , Seismol. Res. Lett. 91, 2803 (2020). [OpenUrl][47] 13. [↵][48]1. T.-K. Hong, 2. R. Martin-Short, 3. R. M. Allen , Seismol. Res. Lett. 91, 2343 (2020). [OpenUrl][49] 14. [↵][50]1. C. Le Quéré et al ., Nat. Clim. Chang. 10, 647 (2020). [OpenUrl][51] 15. [↵][52]1. P. Poli, 2. J. Boaga, 3. I. Molinari, 4. V. Cascone, 5. L. Boschi , Sci. Rep. 10, 9404 (2020). [OpenUrl][53][CrossRef][54][PubMed][55] Acknowledgments: We thank L. Ermert and B. Liposky for their comments. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: #ref-13 [14]: #ref-14 [15]: #ref-15 [16]: pending:yes [17]: #xref-ref-1-1 "View reference 1 in text" [18]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DDenolle%26rft.auinit1%253DM.%2BA.%26rft.volume%253D343%26rft.issue%253D6169%26rft.spage%253D399%26rft.epage%253D403%26rft.atitle%253DStrong%2BGround%2BMotion%2BPrediction%2BUsing%2BVirtual%2BEarthquakes%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1245678%26rft_id%253Dinfo%253Apmid%252F24458636%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNDMvNjE2OS8zOTkiO3M6NDoiYXRvbSI7czoyMzoiL3NjaS8zNjkvNjUwOS8xMjk5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [20]: #xref-ref-2-1 "View reference 2 in text" [21]: {openurl}?query=rft.jtitle%253DGeophys.%2BJ.%2BInt.%26rft.volume%253D220%26rft.spage%253D96%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [22]: #xref-ref-3-1 "View reference 3 in text" [23]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLecocq%26rft.auinit1%253DT.%26rft.volume%253D369%26rft.issue%253D6509%26rft.spage%253D1338%26rft.epage%253D1343%26rft.atitle%253DGlobal%2Bquieting%2Bof%2Bhigh-frequency%2Bseismic%2Bnoise%2Bdue%2Bto%2BCOVID-19%2Bpandemic%2Blockdown%2Bmeasures%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abd2438%26rft_id%253Dinfo%253Apmid%252F32703907%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNjkvNjUwOS8xMzM4IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzY5LzY1MDkvMTI5OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [25]: #xref-ref-4-1 "View reference 4 in text" [26]: {openurl}?query=rft.jtitle%253DCurr.%2BBiol.%26rft.volume%253D28%26rft.spage%253DR547%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.cub.2018.03.062%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [27]: /lookup/external-ref?access_num=10.1016/j.cub.2018.03.062&link_type=DOI [28]: #xref-ref-5-1 "View reference 5 in text" [29]: {openurl}?query=rft.jtitle%253DRev.%2BGeophys.%26rft.volume%253D54%26rft.spage%253D708%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: #xref-ref-6-1 "View reference 6 in text" [31]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DEkstrom%26rft.auinit1%253DG.%26rft.volume%253D339%26rft.issue%253D6126%26rft.spage%253D1416%26rft.epage%253D1419%26rft.atitle%253DSimple%2BScaling%2Bof%2BCatastrophic%2BLandslide%2BDynamics%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1232887%26rft_id%253Dinfo%253Apmid%252F23520108%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMzkvNjEyNi8xNDE2IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzY5LzY1MDkvMTI5OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [33]: #xref-ref-7-1 "View reference 7 in text" [34]: {openurl}?query=rft.jtitle%253DGeophys.%2BRes.%2BLett.%26rft.volume%253D46%26rft.spage%253D3734%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: #xref-ref-8-1 "View reference 8 in text" [36]: {openurl}?query=rft.jtitle%253DGeophys.%2BRes.%2BLett.%26rft.volume%253D45%26rft.spage%253D6459%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [37]: #xref-ref-9-1 "View reference 9 in text" [38]: {openurl}?query=rft.jtitle%253DEarth%2BPlanet.%2BSci.%2BLett.%26rft.volume%253D484%26rft.spage%253D287%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [39]: #xref-ref-10-1 "View reference 10 in text" [40]: {openurl}?query=rft.jtitle%253DScience%2BAdvances%26rft.stitle%253DSci%2BAdv%26rft.aulast%253DMordret%26rft.auinit1%253DA.%26rft.volume%253D2%26rft.issue%253D5%26rft.spage%253De1501538%26rft.epage%253De1501538%26rft.atitle%253DMonitoring%2Bsouthwest%2BGreenlands%2Bice%2Bsheet%2Bmelt%2Bwith%2Bambient%2Bseismic%2Bnoise%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fsciadv.1501538%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [41]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo4OiJhZHZhbmNlcyI7czo1OiJyZXNpZCI7czoxMjoiMi81L2UxNTAxNTM4IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzY5LzY1MDkvMTI5OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [42]: #xref-ref-11-1 "View reference 11 in text" [43]: {openurl}?query=rft.jtitle%253DSci.%2BRep.%26rft.volume%253D7%26rft.spage%253D15296%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41598-016-0028-x%26rft_id%253Dinfo%253Apmid%252F28127051%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: /lookup/external-ref?access_num=10.1038/s41598-016-0028-x&link_type=DOI [45]: /lookup/external-ref?access_num=28127051&link_type=MED&atom=%2Fsci%2F369%2F6509%2F1299.atom [46]: #xref-ref-12-1 "View reference 12 in text" [47]: {openurl}?query=rft.jtitle%253DSeismol.%2BRes.%2BLett.%26rft.volume%253D91%26rft.spage%253D2803%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [48]: #xref-ref-13-1 "View reference 13 in text" [49]: {openurl}?query=rft.jtitle%253DSeismol.%2BRes.%2BLett.%26rft.volume%253D91%26rft.spage%253D2343%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [50]: #xref-ref-14-1 "View reference 14 in text" [51]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChang.%26rft.volume%253D10%26rft.spage%253D647%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [52]: #xref-ref-15-1 "View reference 15 in text" [53]: {openurl}?query=rft.jtitle%253DSci.%2BRep.%26rft.volume%253D10%26rft.spage%253D9404%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41598-020-66368-0%26rft_id%253Dinfo%253Apmid%252F32523080%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [54]: /lookup/external-ref?access_num=10.1038/s41598-020-66368-0&link_type=DOI [55]: /lookup/external-ref?access_num=32523080&link_type=MED&atom=%2Fsci%2F369%2F6509%2F1299.atom |
领域 | 气候变化 ; 资源环境 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/294086 |
专题 | 气候变化 资源环境科学 |
推荐引用方式 GB/T 7714 | Marine A. Denolle,Tarje Nissen-Meyer. Quiet Anthropocene, quiet Earth[J]. Science,2020. |
APA | Marine A. Denolle,&Tarje Nissen-Meyer.(2020).Quiet Anthropocene, quiet Earth.Science. |
MLA | Marine A. Denolle,et al."Quiet Anthropocene, quiet Earth".Science (2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论