GSTDTAP  > 地球科学
DOI10.5194/acp-18-3755-2018
The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole
Neff, William1,2; Crawford, Jim3; Buhr, Marty4; Nicovich, John5; Chen, Gao3; Davis, Douglas5
2018-03-14
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2018
卷号18期号:5页码:3755-3778
文章类型Article
语种英语
国家USA
英文摘要

Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole (SP) during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2005, 2006-2007). Together, analyses of the data collected from these studies provide insight into the large-to small-scale meteorology that sets the stage for extremes in NO and the significant variability that occurs day to day, within seasons, and year to year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: initially in early spring (Days 280-310) the transport of warm air and clouds over West Antarctica dominates the environment over the SP; in late spring (Days 310-340), the winds at 300 hPa exhibit a bimodal behavior alternating between northwest and southeast quadrants, which is of significance to NO; in early summer (Days 340-375), the flow aloft is dominated by winds from the Weddell Sea; and finally, during late spring, winds aloft from the southeast are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east - it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly, although the last twenty years have seen an increasing trend in easterly surface winds at the SP. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for high accumulation of NO. This may occur via the non-linear HOX-NOx chemistry proposed after the first ISCAT field programs and NOx recycling to the surface where quantum yields may be large under the low-snow-accumulation regime of the Antarctic plateau. During the 2003 field program a sodar made direct measurements of the stable boundary layer depth (BLD), a key factor in explaining the chemistry of the high NO concentrations. Because direct measurements were not available in the other years, we developed an estimator for BLD using direct observations obtained in 2003 and step-wise linear regression with meteorological data from a 22m tower (that was tested against independent data obtained in 1993). These data were then used with assumptions about the column abundance of NO to estimate surface fluxes of NOx. These results agreed in magnitude with results at Concordia Station and confirmed significant daily, intraseasonal and interannual variability in NO and its flux from the snow surface. Finally, we found that synoptic to mesoscale eddies governed the boundary layer circulation and accumulation pathways for NO at the SP rather than katabatic forcing. It was the small-scale features of the circulation including the transition from cloudy to clear conditions that set the stage for short-term extremes in NO, whereas larger-scale features were associated with more moderate concentrations.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000427603500003
WOS关键词ISCAT 2000 ; DOME-C ; INVESTIGATION ANTCI ; EAST-ANTARCTICA ; SURFACE SNOW ; VARIABILITY ; HEMISPHERE ; NO ; NITRATE ; REASSESSMENT
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/29465
专题地球科学
作者单位1.NOAA, ESRL, Div Phys Sci, Boulder, CO 80305 USA;
2.Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA;
3.NASA, Langley Res Ctr, Hampton, VA 23681 USA;
4.Air Qual Design, Golden, CO 80403 USA;
5.Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
推荐引用方式
GB/T 7714
Neff, William,Crawford, Jim,Buhr, Marty,et al. The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(5):3755-3778.
APA Neff, William,Crawford, Jim,Buhr, Marty,Nicovich, John,Chen, Gao,&Davis, Douglas.(2018).The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(5),3755-3778.
MLA Neff, William,et al."The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.5(2018):3755-3778.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Neff, William]的文章
[Crawford, Jim]的文章
[Buhr, Marty]的文章
百度学术
百度学术中相似的文章
[Neff, William]的文章
[Crawford, Jim]的文章
[Buhr, Marty]的文章
必应学术
必应学术中相似的文章
[Neff, William]的文章
[Crawford, Jim]的文章
[Buhr, Marty]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。