GSTDTAP  > 气候变化
How to better understand what makes a virus win during transmission?
admin
2020-09-25
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)

The framework, published in Frontiers in Microbiology, was applied on transmission data of the influenza virus, and offers to be a new tool for anticipating the consequences of microbial diversity and optimizing disease control measures.

Estimating fitness variation among microorganisms, meaning their aptitude to survive and reproduce in given conditions, allows to predict their infection trajectories in single hosts and transmission in host populations. Among two viral strains, which will be the one to win against the host's immune response, or upon administration of drugs and vaccines? In virus dynamics, understanding in detail such scenarios is crucial, given the increase in resistance to antivirals and other evolutionary changes. Nowadays, this understanding is enhanced via mathematical models, but the majority of current approaches describe limited scenarios, focusing on competitive exclusion, where one strain of the virus always wins over another because it has higher fitness.

The Mathematical Modelling of Biological Processes research group from Instituto Gulbenkian de Ciência developed a mathematical framework that enables extension beyond such limitation. Based on the Lotka-Volterra model, widely used in ecology, the researchers propose a framework that allows, in addition, verification of scenarios of frequency-dependent competition between microbial strains in a host leading up to transmission. "We applied this framework to a dataset obtained from previous studies, where they estimated different parameters related to differences in transmission fitness between two influenza virus strains in ferrets", explains Erida Gjini, lead author of the study. "We went further and, by considering more complex interactions between viruses and the role of stochasticity in transmission, we showed that for the same dataset our model predicts a scenario of coexistence between strains and reveals a higher transmitted viral load", concludes the researcher.

The advantage of this framework lies in its simplicity and generality: the model can be applied to other ecological scenarios of microbial competition, while allowing exploration of more outcomes from the competitive dynamics between two strains.

This study was developed at Instituto Gulbenkian de Ciência and in collaboration with the Master program in Biostatistics at the Faculty of Sciences, University of Lisbon.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/295959
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. How to better understand what makes a virus win during transmission?. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。