GSTDTAP  > 地球科学
Chemical innovation stabilizes best-performing perovskite formulation
admin
2020-10-01
发布年2020
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)
IMAGE

IMAGE: Publishing in Science, researchers at EPFL have successfully overcome a limiting problem with stabilizing the best-performing formulation of metal-halide perovskite films, a key player in a range of applications, including... view more 

Credit: Nripan Mathews NTU, Singapore

Perovskites are a class of materials made up of organic materials bound to a metal. Their fascinating structure and properties have propelled perovskites into the forefront of materials' research, where they are studied for use in a wide range of applications. Metal-halide perovskites are especially popular, and are being considered for use in solar cells, LED lights, lasers, and photodetectors.

For example, the power-conversion efficiency of perovskite solar cells (PSCs) have increased from 3.8% to 25.5% in only ten years, surpassing other thin-film solar cells - including the market-leading, polycrystalline silicon.

Perovskites are usually made by mixing and layering various materials together on a transparent conducting substrate., which produces thin, lightweight films. The process, known as "chemical deposition", is sustainable and relatively cost-effective.

But there is a problem. Since 2014, metal halide perovskites have been made by mixing cations or halides with formamidinium (FAPbI3). The reason is that this recipe results in high power-conversion efficiency in perovskite solar cells. But at the same time, the most stable phase of FAPbI3 is photoinactive, meaning that it does not react to light - the opposite of what a solar power harvester ought to do. In addition, solar cells made with FAPbI3 show long-term stability issues.

Now, researchers led by Michael Grätzel and Anders Hafgeldt at EPFL, have developed a deposition method that overcomes the formamidinium issues while maintaining the high conversion of perovskite solar cells. The work has been published in Science.

In the new method, the materials are first treated with a vapor of methylammonium thiocyanate (MASCN) or formamidinium thiocyanate FASCN. This innovative tweak turns the photoinactive FAPbI3 perovskite films to the desired photosensitive ones.

The scientists used the new FAPbI3 films to make perovskite solar cells. The cells showed more than 23% power-conversion efficiency and long-term operational and thermal stability. They also featured low (330 mV) open-circuit voltage loss and a low (0.75 V) turn-on voltage of electroluminescence.

###

Professor Michael Grätzel's lab and Professor Anders Hgfeldt's lab are part of EPFL's Institute of Chemical Science and Engineering (ISIC), situated in the School of Basics Sciences.

Other contributors

EPFL Laboratory of Computational Chemistry and Biochemistry,

EPFL Laboratory of Magnetic Resonance

Shanghai Synchrotron Radiation Facility (SSRF)

Swiss Federal Laboratories for Materials Science and Technology

Fudan University

Reference

Haizhou Lu, Yuhang Liu, Paramvir Ahlawat, Aditya Mishra, Wolfgang R. Tress, Felix T. Eickemeyer, Yingguo Yang, Fan Fu, Zaiwei Wang, Claudia E. Avalos, Brian I. Carlsen, Anand Agarwalla, Xin Zhang, Xiaoguo Li, Yiqiang Zhan, Shaik M. Zakeeruddin, Lyndon Emsley, Ursula Roethlisberger, Lirong Zheng, Anders Hagfeldt, Michael Graetzel. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 369, eabb8985, 2 October 2020.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/296805
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. Chemical innovation stabilizes best-performing perovskite formulation. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。