GSTDTAP  > 地球科学
SNew solar panel design could lead to wider use of renewable energy
admin
2020-10-08
发布年2020
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)

Designing solar panels in checkerboard lines increases their ability to absorb light by 125 per cent, a new study says.

Researchers say the breakthrough could lead to the production of thinner, lighter and more flexible solar panels that could be used to power more homes and be used in a wider range of products.

The study - led by researchers from the University of York and conducted in partnership with NOVA University of Lisbon (CENIMAT-i3N) -  investigated how different surface designs impacted on the absorption of sunlight in solar cells, which put together form solar panels.

Scientists found that the checkerboard design improved diffraction, which enhanced the probability of light being absorbed which is then used to create electricity.

The renewable energy sector is constantly looking for new ways to boost the light absorption of solar cells in lightweight materials that can be used in products from roof tiles to boat sails and camping equipment.

Solar grade silicon - used to create solar cells - is very energy intensive to produce, so creating slimmer cells and changing the surface design would make them cheaper and more environmentally friendly. 

Dr Christian Schuster from the Department of Physics said: "We found a simple trick for boosting the absorption of slim solar cells. Our investigations show that our idea actually rivals the absorption enhancement of more sophisticated designs - while also absorbing more light deep in the plane and less light near the surface structure itself.

"Our design rule meets all relevant aspects of light-trapping for solar cells, clearing the way for simple, practical, and yet outstanding diffractive structures, with a potential impact beyond photonic applications.

"This design offers potential to further integrate solar cells into thinner, flexible materials and therefore create more opportunity to use solar power in more products."

The study suggests the design principle could impact not only in the solar cell or LED sector but also in applications such as acoustic noise shields, wind break panels, anti-skid surfaces, biosensing applications and atomic cooling.  

Dr Schuster added: "In principle, we would deploy ten times more solar power with the same amount of absorber material: ten times thinner solar cells could enable a rapid expansion of photovoltaics, increase solar electricity production, and greatly reduce our carbon footprint.

"In fact, as refining the silicon raw material is such an energy-intensive process, ten times thinner silicon cells would not only reduce the need for refineries but also cost less, hence empowering our transition to a greener economy." 

Data from the Department for Business, Energy & Industrial Strategy shows renewable energy - including solar power - made up 47% of the UK's electricity generation in the first three months of 2020. 

###

"Light Trapping in Solar Cells: Simple Design Rules to Maximize Absorption" is published in Optica.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/296905
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. SNew solar panel design could lead to wider use of renewable energy. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。