GSTDTAP  > 气候变化
DrugCell: New experimental AI platform matches tumor to best drug combo
admin
2020-10-22
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Experimental artificial intelligence system DrugCell predicts the best drugs to use against a tumor. view more 

Credit: UC San Diego Health Sciences

Only 4 percent of all cancer therapeutic drugs under development earn final approval by the U.S. Food and Drug Administration (FDA).

"That's because right now we can't match the right combination of drugs to the right patients in a smart way," said Trey Ideker, PhD, professor at University of California San Diego School of Medicine and Moores Cancer Center. "And especially for cancer, where we can't always predict which drugs will work best given the unique, complex inner workings of a person's tumor cells."

In a paper published October 20, 2020 in Cancer Cell, Ideker and Brent Kuenzi, PhD, and Jisoo Park, PhD, postdoctoral researchers in his lab, describe DrugCell, a new artificial intelligence (AI) system they created that not only matches tumors to the best drug combinations, but does so in a way that makes sense to humans.

"Most AI systems are 'black boxes' -- they can be very predictive, but we don't actually know all that much about how they work," said Ideker, who is also co-director of the Cancer Cell Map Initiative and the National Resource for Network Biology.

He gave the example of the way an internet image search for "cat" works. AI systems working behind the scenes are trained on existing cat images, but how they actually label a new image as "cat" and not "rat" or something else is unknown.

For AI to be useful in health care, Ideker said, we have to be able to see inside the black box to understand how the system comes to its conclusions. "We need to know why that decision is made, what pathways those recommended drugs are targeting and the reasons for a positive drug response or for its rejection."

The team's work on DrugCell began several years ago in yeast. In a previous study , they built an AI system called DCell using information about a yeast cell's genes and mutations. DCell predicted cellular behaviors, such as growth, all outside the "black box."

DrugCell, a next-generation version of DCell, was trained on more than 1,200 tumor cell lines and their responses to nearly 700 FDA-approved and experimental therapeutic drugs -- a total of more than 500,000 cell line/drug pairings. The researchers also validated some of DrugCell's conclusions in laboratory experiments.

With DrugCell, the team can input data about a tumor and the system returns the best known drug, the biological pathways that control response to that drug, and combinations of drugs to best treat the malignancy.

Precision cancer therapy is already available at Moores Cancer Center at UC San Diego Health, where patients may have a biopsy of their tumor sequenced for mutations and assessed by the Molecular Tumor Board, an interdisciplinary group of experts. The board recommends personalized therapies based on the patient's unique genomic alterations and other information. A recent study showed these patients have better outcomes. In a way, DrugCell simulates the human Molecular Tumor Board.

"We were surprised by how well DrugCell was able to translate from laboratory cell lines, which is what we trained the model on, to tumors in mice and patients, as well as clinical trial data," Kuenzi said.

The team's ultimate goal is to get DrugCell into clinics for the benefit of patients, but the study authors caution there's still a lot of work to do.

"While 1,200 cell lines is a good start, it's of course not representative of the full heterogeneity of cancer," Park said. "Our team is now adding more single-cell data and trying different drug structures. We also hope to partner with existing clinical studies to embed DrugCell as a diagnostic tool, testing it prospectively in the real world."

###

Co-authors include: Samson H. Fong, Kyle S. Sanchez, John Lee and Jason F. Kreisberg, all at UC San Diego; and Jianzhu Ma, Purdue University.

Disclosures: Trey Ideker is co-founder of, on the Scientific Advisory Board, and has an equity interest in Data4Cure, Inc. He is also on the Scientific Advisory Board, has an equity interest in, and receives sponsored research funding from Ideaya BioSciences, Inc. The terms of these arrangements have been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies.

Read the full study: https://www.cell.com/cancer-cell/fulltext/S1535-6108(20)30488-8

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/299791
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. DrugCell: New experimental AI platform matches tumor to best drug combo. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。