GSTDTAP  > 气候变化
DOI10.1126/science.abd4585
Autoantibodies against type I IFNs in patients with life-threatening COVID-19
Paul Bastard; Lindsey B. Rosen; Qian Zhang; Eleftherios Michailidis; Hans-Heinrich Hoffmann; Yu Zhang; Karim Dorgham; Quentin Philippot; Jérémie Rosain; Vivien Béziat; Jérémy Manry; Elana Shaw; Liis Haljasmägi; Pärt Peterson; Lazaro Lorenzo; Lucy Bizien; Sophie Trouillet-Assant; Kerry Dobbs; Adriana Almeida de Jesus; Alexandre Belot; Anne Kallaste; Emilie Catherinot; Yacine Tandjaoui-Lambiotte; Jeremie Le Pen; Gaspard Kerner; Benedetta Bigio; Yoann Seeleuthner; Rui Yang; Alexandre Bolze; András N. Spaan; Ottavia M. Delmonte; Michael S. Abers; Alessandro Aiuti; Giorgio Casari; Vito Lampasona; Lorenzo Piemonti; Fabio Ciceri; Kaya Bilguvar; Richard P. Lifton; Marc Vasse; David M. Smadja; Mélanie Migaud; Jérome Hadjadj; Benjamin Terrier; Darragh Duffy; Lluis Quintana-Murci; Diederik van de Beek; Lucie Roussel; Donald C. Vinh; Stuart G. Tangye; Filomeen Haerynck; David Dalmau; Javier Martinez-Picado; Petter Brodin; Michel C. Nussenzweig; Stéphanie Boisson-Dupuis; Carlos Rodríguez-Gallego; Guillaume Vogt; Trine H. Mogensen; Andrew J. Oler; Jingwen Gu; Peter D. Burbelo; Jeffrey I. Cohen; Andrea Biondi; Laura Rachele Bettini; Mariella D'Angio; Paolo Bonfanti; Patrick Rossignol; Julien Mayaux; Frédéric Rieux-Laucat; Eystein S. Husebye; Francesca Fusco; Matilde Valeria Ursini; Luisa Imberti; Alessandra Sottini; Simone Paghera; Eugenia Quiros-Roldan; Camillo Rossi; Riccardo Castagnoli; Daniela Montagna; Amelia Licari; Gian Luigi Marseglia; Xavier Duval; Jade Ghosn; HGID Lab§; NIAID-USUHS Immune Response to COVID Group§; COVID Clinicians§; COVID-STORM Clinicians§; Imagine COVID Group§; French COVID Cohort Study Group§; The Milieu Intérieur Consortium§; CoV-Contact Cohort§; Amsterdam UMC Covid-19 Biobank§; COVID Human Genetic Effort§; John S. Tsang; Raphaela Goldbach-Mansky; Kai Kisand; Michail S. Lionakis; Anne Puel; Shen-Ying Zhang; Steven M. Holland; Guy Gorochov; Emmanuelle Jouanguy; Charles M. Rice; Aurélie Cobat; Luigi D. Notarangelo; Laurent Abel; Helen C. Su; Jean-Laurent Casanova
2020-10-23
发表期刊Science
出版年2020
英文摘要The immune system is complex and involves many genes, including those that encode cytokines known as interferons (IFNs). Individuals that lack specific IFNs can be more susceptible to infectious diseases. Furthermore, the autoantibody system dampens IFN response to prevent damage from pathogen-induced inflammation. Two studies now examine the likelihood that genetics affects the risk of severe coronavirus disease 2019 (COVID-19) through components of this system (see the Perspective by Beck and Aksentijevich). Q. Zhang et al. used a candidate gene approach and identified patients with severe COVID-19 who have mutations in genes involved in the regulation of type I and III IFN immunity. They found enrichment of these genes in patients and conclude that genetics may determine the clinical course of the infection. Bastard et al. identified individuals with high titers of neutralizing autoantibodies against type I IFN-α2 and IFN-ω in about 10% of patients with severe COVID-19 pneumonia. These autoantibodies were not found either in infected people who were asymptomatic or had milder phenotype or in healthy individuals. Together, these studies identify a means by which individuals at highest risk of life-threatening COVID-19 can be identified. Science , this issue p. [eabd4570][1], p. [eabd4585][2]; see also p. [404][3] ### INTRODUCTION Interindividual clinical variability is vast in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranging from silent infection to rapid death. Three risk factors for life-threatening coronavirus disease 2019 (COVID-19) pneumonia have been identified—being male, being elderly, or having other medical conditions—but these risk factors cannot explain why critical disease remains relatively rare in any given epidemiological group. Given the rising toll of the COVID-19 pandemic in terms of morbidity and mortality, understanding the causes and mechanisms of life-threatening COVID-19 is crucial. ### RATIONALE B cell autoimmune infectious phenocopies of three inborn errors of cytokine immunity exist, in which neutralizing autoantibodies (auto-Abs) against interferon-γ (IFN-γ) (mycobacterial disease), interleukin-6 (IL-6) (staphylococcal disease), and IL-17A and IL-17F (mucocutaneous candidiasis) mimic the clinical phenotypes of germline mutations of the genes that encode the corresponding cytokines or receptors. Human inborn errors of type I IFNs underlie severe viral respiratory diseases. Neutralizing auto-Abs against type I IFNs, which have been found in patients with a few underlying noninfectious conditions, have not been unequivocally shown to underlie severe viral infections. While searching for inborn errors of type I IFN immunity in patients with life-threatening COVID-19 pneumonia, we also tested the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical COVID-19. We searched for auto-Abs against type I IFNs in 987 patients hospitalized for life-threatening COVID-19 pneumonia, 663 asymptomatic or mildly affected individuals infected with SARS-CoV-2, and 1227 healthy controls from whom samples were collected before the COVID-19 pandemic. ### RESULTS At least 101 of 987 patients (10.2%) with life-threatening COVID-19 pneumonia had neutralizing immunoglobulin G (IgG) auto-Abs against IFN-ω (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three individual type I IFNs. These auto-Abs neutralize high concentrations of the corresponding type I IFNs, including their ability to block SARS-CoV-2 infection in vitro. Moreover, all of the patients tested had low or undetectable serum IFN-α levels during acute disease. These auto-Abs were present before infection in the patients tested and were absent from 663 individuals with asymptomatic or mild SARS-CoV-2 infection ( P < 10−16). They were present in only 4 of 1227 (0.33%) healthy individuals ( P < 10−16) before the pandemic. The patients with auto-Abs were 25 to 87 years old (half were over 65) and of various ancestries. Notably, 95 of the 101 patients with auto-Abs were men (94%). ### CONCLUSION A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men. In these patients, adaptive autoimmunity impairs innate and intrinsic antiviral immunity. These findings provide a first explanation for the excess of men among patients with life-threatening COVID-19 and the increase in risk with age. They also provide a means of identifying individuals at risk of developing life-threatening COVID-19 and ensuring their enrolment in vaccine trials. Finally, they pave the way for prevention and treatment, including plasmapheresis, plasmablast depletion, and recombinant type I IFNs not targeted by the auto-Abs (e.g., IFN-β). ![Figure][4] Neutralizing auto-Abs to type I IFNs underlie life-threatening COVID-19 pneumonia. We tested the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical COVID-19 by impairing the binding of type I IFNs to their receptor and the activation of the downstream responsive pathway. Neutralizing auto-Abs are represented in red, and type I IFNs are represented in blue. In these patients, adaptive autoimmunity impairs innate and intrinsic antiviral immunity. ISGs, IFN-stimulated genes; TLR, Toll-like receptor; IFNAR, IFN-α/β receptor; pSTAT, phosphorylated signal transducers and activators of transcription; IRF, interferon regulatory factor. Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men. [1]: /lookup/doi/10.1126/science.abd4570 [2]: /lookup/doi/10.1126/science.abd4585 [3]: /lookup/doi/10.1126/science.abe7591 [4]: pending:yes
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/300287
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Paul Bastard,Lindsey B. Rosen,Qian Zhang,et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19[J]. Science,2020.
APA Paul Bastard.,Lindsey B. Rosen.,Qian Zhang.,Eleftherios Michailidis.,Hans-Heinrich Hoffmann.,...&Jean-Laurent Casanova.(2020).Autoantibodies against type I IFNs in patients with life-threatening COVID-19.Science.
MLA Paul Bastard,et al."Autoantibodies against type I IFNs in patients with life-threatening COVID-19".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Paul Bastard]的文章
[Lindsey B. Rosen]的文章
[Qian Zhang]的文章
百度学术
百度学术中相似的文章
[Paul Bastard]的文章
[Lindsey B. Rosen]的文章
[Qian Zhang]的文章
必应学术
必应学术中相似的文章
[Paul Bastard]的文章
[Lindsey B. Rosen]的文章
[Qian Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。