GSTDTAP  > 气候变化
DOI10.1126/science.abe9332
Fisheries rely on threatened salt marshes
Ronald Baker; Matthew D. Taylor; Kenneth W. Able; Michael W. Beck; Just Cebrian; Denise D. Colombano; Rod M. Connolly; Carolyn Currin; Linda A. Deegan; Ilka C. Feller; Ben L. Gilby; Matthew E. Kimball; Thomas J. Minello; Lawrence P. Rozas; Charles Simenstad; R. Eugene Turner; Nathan J. Waltham; Michael P. Weinstein; Shelby L. Ziegler; Philine S.E. zu Ermgassen; Caitlin Alcott; Scott B. Alford; Myriam A. Barbeau; Sarah C. Crosby; Kate Dodds; Alyssa Frank; Janelle Goeke; Lucy A. Goodridge Gaines; Felicity E. Hardcastle; Christopher J. Henderson; W. Ryan James; Matthew D. Kenworthy; Justin Lesser; Debbrota Mallick; Charles W. Martin; Ashley E. McDonald; Catherine McLuckie; Blair H. Morrison; James A. Nelson; Gregory S. Norris; Jeff Ollerhead; James W. Pahl; Sarah Ramsden; Jennifer S. Rehage; James F. Reinhardt; Ryan J. Rezek; L. Mark Risse; Joseph A.M. Smith; Eric L. Sparks; Lorie W. Staver
2020-11-06
发表期刊Science
出版年2020
英文摘要Salt marsh ecosystems and the seascapes in which they are embedded serve as critical habitats for species harvested by fisheries ([ 1 ][1]), which provide food and economic security for hundreds of millions of people ([ 2 ][2]). Historical marsh losses coupled with increasing pressures from coastal development and climate change place these intertidal ecosystems and surrounding uplands under growing threat ([ 3 ][3]). Preventing further losses of salt marshes and associated fisheries production will require greater public awareness and difficult choices in coastal policy and management, underpinned by greater understanding of marsh function. Quantifying the value of salt marsh habitat to fisheries production is challenging. Many fisheries species feed and shelter in the salt marsh only as juveniles, and it is difficult to assess the marsh's effect once they have moved to a new location ([ 1 ][1]). It is also unclear how marsh landscape fragmentation under sea level rise will affect fisheries; it may boost fishery production, at least temporarily ([ 4 ][4]), but it could also disrupt food web processes that support fisheries ([ 5 ][5]). Projections of marsh expansion offer hope ([ 6 ][6]) but are largely dependent on changes in coastal watershed management. For instance, human development may prevent marshes from migrating upland with sea level rise and thus lead to marsh drowning ([ 7 ][7]). Adequate sediment supply is also essential for marsh resilience, but many coastal areas in the world are sediment-starved ([ 8 ][8]). Much effort has been made to restore natural riverine flow and other sources of sediment delivery into marshes, although such efforts may have negative impacts on the very fisheries these marshes support ([ 9 ][9]). To design effective policies for salt marsh restoration and conservation that protect fisheries production, we need to better understand the role of salt marshes. Researchers should continue to explore the fundamental linkages between salt marshes and fisheries ([ 10 ][10]), the marsh habitat value within the context of the interconnected and increasingly urbanized mosaic of coastal ecosystems, and the value of salt marshes created by upland transgression and active engineering. Restoration and conservation planning must take a long-term view that specifically recognizes sea level rise and its interaction with other anthropogenic stressors. 1. [↵][11]1. M. W. Beck et al ., Bioscience 51, 633 (2001). [OpenUrl][12][CrossRef][13][Web of Science][14] 2. [↵][15]1. J. C. Rice, 2. S. M. Garcia , ICES J. Mar. Sci. 68, 1343 (2011). [OpenUrl][16][CrossRef][17] 3. [↵][18]1. K. B. Gedan, 2. B. R. Silliman, 3. M. D. Bertness , Annu. Rev. Mar. Sci. 1, 117 (2009). [OpenUrl][19][CrossRef][20][Web of Science][21] 4. [↵][22]1. E. J. Chesney, 2. D. M. Baltz, 3. R. G. Thomas , Ecol. Appl. 10, 350 (2000). [OpenUrl][23] 5. [↵][24]1. G. A. Hyndes et al ., Biol. Rev. 89, 232 (2014). [OpenUrl][25][CrossRef][26] 6. [↵][27]1. M. Schuerch et al ., Nature 561, 231 (2018). [OpenUrl][28][CrossRef][29][PubMed][30] 7. [↵][31]1. J. Fitzsimons, 2. M. W. Beck, 3. L. Hale, 4. K. Leo, 5. C. Gillies , Ocean Coast. Manag. 175, 180 (2019). [OpenUrl][32] 8. [↵][33]1. M. L. Kirwan et al ., Geophys. Res. Lett. 37, L23401 (2010). [OpenUrl][34][CrossRef][35] 9. [↵][36]1. T. J. Mozdzer, 2. E. B. Watson, 3. W. H. Orem, 4. C. Swarzenski, 5. R. E. Turner , Sci. Tot. Environ. 743, 140420 (2020). [OpenUrl][37] 10. [↵][38]1. J. S. Lefcheck et al ., Conserv. Lett. 12, e12645, (2019). [OpenUrl][39] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #xref-ref-1-1 "View reference 1 in text" [12]: {openurl}?query=rft.jtitle%253DBioscience%26rft_id%253Dinfo%253Adoi%252F10.1641%252F0006-3568%25282001%2529051%255B0633%253ATICAMO%255D2.0.CO%253B2%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [13]: /lookup/external-ref?access_num=10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2&link_type=DOI [14]: /lookup/external-ref?access_num=000170683500008&link_type=ISI [15]: #xref-ref-2-1 "View reference 2 in text" [16]: {openurl}?query=rft.jtitle%253DICES%2BJ.%2BMar.%2BSci.%26rft_id%253Dinfo%253Adoi%252F10.1093%252Ficesjms%252Ffsr041%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [17]: /lookup/external-ref?access_num=10.1093/icesjms/fsr041&link_type=DOI [18]: #xref-ref-3-1 "View reference 3 in text" [19]: {openurl}?query=rft.jtitle%253DAnnu.%2BRev.%2BMar.%2BSci.%26rft.volume%253D1%26rft.spage%253D117%26rft_id%253Dinfo%253Adoi%252F10.1146%252Fannurev.marine.010908.163930%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: /lookup/external-ref?access_num=10.1146/annurev.marine.010908.163930&link_type=DOI [21]: /lookup/external-ref?access_num=000267421700006&link_type=ISI [22]: #xref-ref-4-1 "View reference 4 in text" [23]: {openurl}?query=rft.jtitle%253DEcol.%2BAppl.%26rft.volume%253D10%26rft.spage%253D350%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: #xref-ref-5-1 "View reference 5 in text" [25]: {openurl}?query=rft.jtitle%253DBiol.%2BRev.%26rft.volume%253D89%26rft.spage%253D232%26rft_id%253Dinfo%253Adoi%252F10.1111%252Fbrv.12055%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1111/brv.12055&link_type=DOI [27]: #xref-ref-6-1 "View reference 6 in text" [28]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D561%26rft.spage%253D231%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41586-018-0476-5%26rft_id%253Dinfo%253Apmid%252F30209368%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/external-ref?access_num=10.1038/s41586-018-0476-5&link_type=DOI [30]: /lookup/external-ref?access_num=30209368&link_type=MED&atom=%2Fsci%2F370%2F6517%2F670.1.atom [31]: #xref-ref-7-1 "View reference 7 in text" [32]: {openurl}?query=rft.jtitle%253DOcean%2BCoast.%2BManag.%26rft.volume%253D175%26rft.spage%253D180%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [33]: #xref-ref-8-1 "View reference 8 in text" [34]: {openurl}?query=rft.jtitle%253DGeophys.%2BRes.%2BLett.%26rft.volume%253D37%26rft.spage%253DL23401%26rft_id%253Dinfo%253Adoi%252F10.1029%252F2010GL045489%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: /lookup/external-ref?access_num=10.1029/2010GL045489&link_type=DOI [36]: #xref-ref-9-1 "View reference 9 in text" [37]: {openurl}?query=rft.jtitle%253DSci.%2BTot.%2BEnviron.%26rft.volume%253D743%26rft.spage%253D140420%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: #xref-ref-10-1 "View reference 10 in text" [39]: {openurl}?query=rft.jtitle%253DConserv.%2BLett.%26rft.volume%253D12%26rft.spage%253D12645e%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
被引频次:33[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/301981
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Ronald Baker,Matthew D. Taylor,Kenneth W. Able,et al. Fisheries rely on threatened salt marshes[J]. Science,2020.
APA Ronald Baker.,Matthew D. Taylor.,Kenneth W. Able.,Michael W. Beck.,Just Cebrian.,...&Lorie W. Staver.(2020).Fisheries rely on threatened salt marshes.Science.
MLA Ronald Baker,et al."Fisheries rely on threatened salt marshes".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ronald Baker]的文章
[Matthew D. Taylor]的文章
[Kenneth W. Able]的文章
百度学术
百度学术中相似的文章
[Ronald Baker]的文章
[Matthew D. Taylor]的文章
[Kenneth W. Able]的文章
必应学术
必应学术中相似的文章
[Ronald Baker]的文章
[Matthew D. Taylor]的文章
[Kenneth W. Able]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。