GSTDTAP  > 气候变化
Exoskeleton-assisted walking improves mobility in individuals with spinal cord injury
admin
2020-11-12
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: For this study, two types of exoskeletons were used by participants with spinal cord injury - Ekso GT, shown here, and Rewalk. view more 

Credit: Kessler Foundation

East Hanover, NJ. November 12, 2020.
Exoskeletal-assisted walking is safe, feasible, and effective in individuals disabled by spinal cord injury, according to the results of a federally funded multi-site randomized clinical trial. The article, "Mobility skills with exoskeletal-assisted walking in persons with SCI: Results from a three-center randomized clinical trial" (doi: 10.3389/frobt.2020.00093), was published August 4, 2020 in Frontiers in Robotics and AI. It is available open access at https://www.frontiersin.org/articles/10.3389/frobt.2020.00093/full

The authors are Eun-Kyoung Hong, Pierre Asselin, MS, Steven Knezevic, Stephen Kornfeld, DO, and Ann M. Spungen, EdD, of the James J. Peters VA Medical Center, Gail Forrest, PhD, of Kessler Foundation, Peter Gorman, MD, and William Scott, PhD, of the University of Maryland School of Medicine, and Sandra Wojciehowski, PT, of Craig Hospital and Kessler Foundation. The study was conducted at three sites: James J. Peters VA Medical Center, Bronx, NY; Kessler Foundation, West Orange, NJ; and the University of Maryland.

Study investigators sought to establish guidelines for clinical exoskeletal-assisted walking programs for individuals with spinal cord injury. Their goal was to determine the number of exoskeleton training sessions needed by individuals with varied mobility deficits to gain adequate exoskeletal assisted walking skills and attain velocity milestones. Two powered exoskeletons were used in the study: the Ekso GT (Ekso Bionics), and ReWalk (ReWalk Robotics).

The 50 participants included individuals with tetraplegia and paraplegia, both motor complete and incomplete. In this randomized control trial, their performance was measured over a total of 36 sessions. Participants were randomized to Group 1 (exo-assisted walking) or Group 2 (usual activity) for 12 weeks; each group crossed over to the other study arm. After 12, 24, and 36 sessions, their progress was measured by the 10-meter walk test seconds (s) (10MWT), 6-min walk test meters (m) (6MWT), and the Timed-Up-and-Go (s) (TUG).

The majority of participants mastered the ability to ambulate effectively with the assistance of the exoskeleton, according to Dr. Forrest, director of the Tim and Caroline Reynolds Center for Spinal Stimulation, and associate director of the Center for Mobility and Rehabilitation Engineering Research at Kessler Foundation. After 12 sessions, 31 (62%), 35 (70%), and 36 (72%) participants achieved the milestones established for the 10MWT, 6MWT, and TUG, respectively. After 36 sessions, the results improved, with 40 (80%), 41 (82%), and 42 (84%) of participants meeting the criteria for the 10MWT, 6MWT, and TUG, respectively.

"Participants showed improvement regardless of level of injury, completeness, or duration of injury," noted Dr. Forrest, "indicating that exoskeletons can be used to improve mobility across a broad spectrum of individuals with neurological deficits caused by spinal cord injury. Our results can be used to guide the application of exoskeletons to spinal cord injury rehabilitation, and the timely acquisition of skills for the safe use of these devices for rehabilitation and community use."

###

Funding sources:
US Department of Defense CDMRP SCI Award 30234 (W81XWH-14-2-0170); National Center for the Medical Consequences of SCI (B9212-C, B2020-C); James Lawrence Kernan Endowment Fund; Bronx Veterans Medical Research Foundation

About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.

For more information, or to interview an expert, contact:
Carolann Murphy,
973.324.8382,
CMurphy@KesslerFoundation.org.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/302599
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Exoskeleton-assisted walking improves mobility in individuals with spinal cord injury. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。