GSTDTAP  > 气候变化
DOI10.1029/2020GL089651
Machine learning‐based analysis of geological susceptibility to induced seismicity in the Montney Formation, Canada
P. Wozniakowska; D. W. Eaton
2020-11-09
发表期刊Geophysical Research Letters
出版年2020
英文摘要

We analyze data from 6,466 multistage horizontal hydraulic fracturing wells drilled into the Montney Formation over a large region in western Canada to evaluate the impact of geological, geomechanical and tectonic characteristics on the distribution of hydraulic fracturing induced seismicity. Logistic Regression was used to obtain a machine learning estimate of the seismogenic activation potential of each well. Our results fit the observed spatial variability, including an enigmatic change in seismicity at 120oW that does not correlate with any change in industrial activity. Feature importance analysis provides insight into data types that have the greatest impact on the results. Based on current data, seismogenic activation potential is most strongly influenced by depth of injection and distance of the well to the Cordilleran thrust belt.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/303941
专题气候变化
推荐引用方式
GB/T 7714
P. Wozniakowska,D. W. Eaton. Machine learning‐based analysis of geological susceptibility to induced seismicity in the Montney Formation, Canada[J]. Geophysical Research Letters,2020.
APA P. Wozniakowska,&D. W. Eaton.(2020).Machine learning‐based analysis of geological susceptibility to induced seismicity in the Montney Formation, Canada.Geophysical Research Letters.
MLA P. Wozniakowska,et al."Machine learning‐based analysis of geological susceptibility to induced seismicity in the Montney Formation, Canada".Geophysical Research Letters (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[P. Wozniakowska]的文章
[D. W. Eaton]的文章
百度学术
百度学术中相似的文章
[P. Wozniakowska]的文章
[D. W. Eaton]的文章
必应学术
必应学术中相似的文章
[P. Wozniakowska]的文章
[D. W. Eaton]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。