GSTDTAP  > 资源环境科学
DOI10.1289/EHP6774
Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders
Martin Scholze; Camilla Taxvig; Andreas Kortenkamp; Julie Boberg; Sofie Christiansen; Terje Svingen; Karin Lauschke; Henrik Frandsen; Sibylle Ermler; Susan Strange Hermann; Mikael Pedersen; Anne Kruse Lykkeberg; Marta Axelstad; Anne Marie Vinggaard
2020-11-25
发表期刊Environmental Health Perspectives
出版年2020
英文摘要

Abstract

Background:

Many pesticides can antagonize the androgen receptor (AR) or inhibit androgen synthesis in vitro but their potential to cause reproductive toxicity related to disruption of androgen action during fetal life is difficult to predict. Currently no approaches for using in vitro data to anticipate such in vivo effects exist. Prioritization schemes that limit unnecessary in vivo testing are urgently needed.

Objectives:

The aim was to develop a quantitative in vitro to in vivo extrapolation (QIVIVE) approach for predicting in vivo anti-androgenicity arising from gestational exposures and manifesting as a shortened anogenital distance (AGD) in male rats.

Methods:

We built a physiologically based pharmacokinetic (PBK) model to simulate concentrations of chemicals in the fetus resulting from maternal dosing. The predicted fetal levels were compared with analytically determined concentrations, and these were judged against in vitro active concentrations for AR antagonism and androgen synthesis suppression.

Results:

We first evaluated our model by using in vitro and in vivo anti-androgenic data for procymidone, vinclozolin, and linuron. Our PBK model described the measured fetal concentrations of parent compounds and metabolites quite accurately (within a factor of five). We applied the model to nine current-use pesticides, all with in vitro evidence for anti-androgenicity but missing in vivo data. Seven pesticides (fludioxonil, cyprodinil, dimethomorph, imazalil, quinoxyfen, fenhexamid, o-phenylphenol) were predicted to produce a shortened AGD in male pups, whereas two (λ-cyhalothrin, pyrimethanil) were anticipated to be inactive. We tested these expectations for fludioxonil, cyprodinil, and dimethomorph and observed shortened AGD in male pups after gestational exposure. The measured fetal concentrations agreed well with PBK-modeled predictions.

Discussion:

Our QIVIVE model newly identified fludioxonil, cyprodinil, and dimethomorph as in vivo anti-androgens. With the examples investigated, our approach shows great promise for predicting in vivo anti-androgenicity (i.e., AGD shortening) for chemicals with in vitro activity and for minimizing unnecessary in vivo testing. https://doi.org/10.1289/EHP6774

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/304790
专题资源环境科学
推荐引用方式
GB/T 7714
Martin Scholze,Camilla Taxvig,Andreas Kortenkamp,et al. Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders[J]. Environmental Health Perspectives,2020.
APA Martin Scholze.,Camilla Taxvig.,Andreas Kortenkamp.,Julie Boberg.,Sofie Christiansen.,...&Anne Marie Vinggaard.(2020).Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders.Environmental Health Perspectives.
MLA Martin Scholze,et al."Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders".Environmental Health Perspectives (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Martin Scholze]的文章
[Camilla Taxvig]的文章
[Andreas Kortenkamp]的文章
百度学术
百度学术中相似的文章
[Martin Scholze]的文章
[Camilla Taxvig]的文章
[Andreas Kortenkamp]的文章
必应学术
必应学术中相似的文章
[Martin Scholze]的文章
[Camilla Taxvig]的文章
[Andreas Kortenkamp]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。