GSTDTAP  > 气候变化
DOI10.1029/2020GL091236
Observational constraints on warm cloud microphysical processes using machine learning and optimization techniques
J. Christine Chiu; C. Kevin Yang; Peter J. van Leeuwen; Graham Feingold; Robert Wood; Yann Blanchard; Fan Mei; Jian Wang
2020-12-11
发表期刊Geophysical Research Letters
出版年2020
英文摘要

We introduce new parameterizations for autoconversion and accretion rates that greatly improve representation of the growth processes of warm rain. The new parameterizations capitalize on machine‐learning and optimization techniques and are constrained by in‐situ cloud probe measurements from the recent Atmospheric Radiation Measurement Program field campaign at Azores. The uncertainty in the new estimates of autoconversion and accretion rates are about 15% and 5%, respectively, outperforming existing parameterizations. Our results confirm that cloud and drizzle water content are the most important factors for determining accretion rates. However, for autoconversion, in addition to cloud water content and droplet number concentration, we discovered a key role of drizzle number concentration that is missing in current parameterizations. The robust relation between autoconversion rate and drizzle number concentration is surprising but real, and furthermore supported by theory. Thus, drizzle number concentration should be considered in parameterizations for improved representation of the autoconversion process.

This article is protected by copyright. All rights reserved.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/308203
专题气候变化
推荐引用方式
GB/T 7714
J. Christine Chiu,C. Kevin Yang,Peter J. van Leeuwen,et al. Observational constraints on warm cloud microphysical processes using machine learning and optimization techniques[J]. Geophysical Research Letters,2020.
APA J. Christine Chiu.,C. Kevin Yang.,Peter J. van Leeuwen.,Graham Feingold.,Robert Wood.,...&Jian Wang.(2020).Observational constraints on warm cloud microphysical processes using machine learning and optimization techniques.Geophysical Research Letters.
MLA J. Christine Chiu,et al."Observational constraints on warm cloud microphysical processes using machine learning and optimization techniques".Geophysical Research Letters (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[J. Christine Chiu]的文章
[C. Kevin Yang]的文章
[Peter J. van Leeuwen]的文章
百度学术
百度学术中相似的文章
[J. Christine Chiu]的文章
[C. Kevin Yang]的文章
[Peter J. van Leeuwen]的文章
必应学术
必应学术中相似的文章
[J. Christine Chiu]的文章
[C. Kevin Yang]的文章
[Peter J. van Leeuwen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。