GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2020.105430
Correcting bias of satellite rainfall data using physical empirical model
Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Bin Ismail, Md Asaduzzaman, Ashraf Dewan
2020-12-25
发表期刊Atmospheric Research
出版年2020
英文摘要

The provision of high resolution near real-time rainfall data has made satellite rainfall products very potential for monitoring hydrological hazards. However, a major challenge in their direct-use can be problematic due to measurement error. In this study, an attempt was made to correct the bias of Global Satellite Mapping of Precipitation near-real-time (GSMaP_NRT) product. Physical factors, including topography, season, windspeed and cloud types were accounted for correcting bias. Peninsular Malaysia was used as the case study area. Gridded rainfall, developed from 80 gauges for the period 2000–2018, was used along with physical factors in a two-stage procedure. The model consisted of a classifier to categorise rainfall of different intensity and regression models to predict rainfall amount of different intensity class. An ensemble tree-based learning algorithm, called random forest, was used for classification and regression. The results revealed a big improvement of near-real-time GSMaP_NRT product after bias correction (GSMaP_BC) compared to the gauge corrected version (GSMaP_GC). Accuracy evaluation for complete timeseries indicated about 110% reduction of normalized root-mean-square error (NRMSE) in GSMaP_BC (0.8) compared to GSMaP_NRT (1.7) and GSMaP_GC (1.75). On the other hand, the bias of GSMaP_BC became nearly zero (0.3) compared to 2.1 and − 3.1 for GSMaP_NRT and GSMaP_GC products. The spatial correlation of GSMaP_BC was >0.7 with observed rainfall data for all months compared to 0.2–0.78 for GSMaP_NRT and GSMaP_GC, indicating capability of GSMaP_BC to replicate spatial pattern of rainfall. The bias-corrected near-real-time GSMaP data can be used for monitoring and forecasting floods and hydrological phenomena in the absence of dense rain-gauge network in areas, frequently experience hydro-meteorological hazards.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/309022
专题地球科学
推荐引用方式
GB/T 7714
Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Bin Ismail, Md Asaduzzaman, Ashraf Dewan. Correcting bias of satellite rainfall data using physical empirical model[J]. Atmospheric Research,2020.
APA Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Bin Ismail, Md Asaduzzaman, Ashraf Dewan.(2020).Correcting bias of satellite rainfall data using physical empirical model.Atmospheric Research.
MLA Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Bin Ismail, Md Asaduzzaman, Ashraf Dewan."Correcting bias of satellite rainfall data using physical empirical model".Atmospheric Research (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Bin Ismail, Md Asaduzzaman, Ashraf Dewan]的文章
百度学术
百度学术中相似的文章
[Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Bin Ismail, Md Asaduzzaman, Ashraf Dewan]的文章
必应学术
必应学术中相似的文章
[Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Bin Ismail, Md Asaduzzaman, Ashraf Dewan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。